Knowledge Agora



Similar Articles

Title Second life use of Li-ion batteries in the heavy-duty vehicle industry: Feasibilities of remanufacturing, repurposing, and reusing approaches
ID_Doc 29246
Authors Chirumalla, K; Kulkov, I; Vu, F; Rahic, M
Title Second life use of Li-ion batteries in the heavy-duty vehicle industry: Feasibilities of remanufacturing, repurposing, and reusing approaches
Year 2023
Published
Abstract As the adoption of electric vehicles (EVs) accelerates, the efficient management of end-of-life lithium-ion (Li-ion) batteries becomes a pressing concern. This case study investigates sustainable second life approaches for Li-ion batteries within a leading manufacturing company in the heavy-duty vehicle industry. Employing an exploratory methodology, the study evaluates three distinct circularity approaches for second life applications: remanufacturing, repurposing, and reusing. Based on a financial model and sustainability metrics, remanufacturing emerged as the most economically viable and environmentally sustainable strategy for the company. The study also explores supplementary approaches, such as repurposing used batteries for smaller power applications and reusing them in large-scale Energy Storage Systems (ESS). Regulatory inconsistencies in battery second life are identified as a significant barrier to widespread implementation. The study concludes by advocating for a multi stakeholder ecosystem approach and calls for the establishment of universal circularity regulations to streamline the second life of Li-ion batteries.
PDF https://doi.org/10.1016/j.spc.2023.10.007

Similar Articles

ID Score Article
21474 Schulz-Mönninghoff, M; Bey, N; Norregaard, PU; Niero, M Integration of energy flow modelling in life cycle assessment of electric vehicle battery repurposing: Evaluation of multi-use cases and comparison of circular business models(2021)
16332 Albertsen, L; Richter, JL; Peck, P; Dalhammar, C; Plepys, A Circular business models for electric vehicle lithium-ion batteries: An analysis of current practices of vehicle manufacturers and policies in the EU(2021)
7603 Rufino, CA Jr; Sanseverino, ER; Gallo, P; Koch, D; Diel, S; Walter, G; Trilla, L; Ferreira, VJ; Pérez, GB; Kotak, Y; Eichman, J; Schweiger, HG; Zanin, H Towards to Battery Digital Passport: Reviewing Regulations and Standards for Second-Life Batteries(2024)Batteries-Basel, 10, 4
22681 Rajaeifar, MA; Ghadimi, P; Raugei, M; Wu, YF; Heidrich, O Challenges and recent developments in supply and value chains of electric vehicle batteries: A sustainability perspective(2022)
78140 Jiao, N; Evans, S Business models for sustainability: the case of second-life electric vehicle batteries(2016)
20278 Chuang, YS; Cheng, HP; Cheng, CC Reuse of Retired Lithium-Ion Batteries (LIBs) for Electric Vehicles (EVs) from the Perspective of Extended Producer Responsibility (EPR) in Taiwan(2024)World Electric Vehicle Journal, 15, 3
3956 Sheth, RP; Ranawat, NS; Chakraborty, A; Mishra, RP; Khandelwal, M The Lithium-Ion Battery Recycling Process from a Circular Economy Perspective-A Review and Future Directions(2023)Energies, 16, 7
29578 Eleftheriadis, P; Leva, S; Gangi, M; Rey, AV; Borgo, A; Coslop, G; Groppo, E; Grande, L; Sedzik, M Second Life Batteries: Current Regulatory Framework, Evaluation Methods, and Economic Assessment(2024)Ieee Industry Applications Magazine, 30.0, 1
4350 Richa, K; Babbitt, CW; Gaustad, G Eco-Efficiency Analysis of a Lithium-Ion Battery Waste Hierarchy Inspired by Circular Economy(2017)Journal Of Industrial Ecology, 21, 3
64582 Paul, D; Pechancová, V; Saha, N; Pavelková, D; Saha, N; Motiei, M; Jamatia, T; Chaudhuri, M; Ivanichenko, A; Venher, M; Hrbácková, L; Sáha, P Life cycle assessment of lithium-based batteries: Review of sustainability dimensions(2024)
Scroll