Knowledge Agora



Similar Articles

Title Potential of biochar use in building materials
ID_Doc 29334
Authors Legan, M; Gotvajn, AZ; Zupan, K
Title Potential of biochar use in building materials
Year 2022
Published
Abstract A critical review of the articles dealing with biochar in terms of the reuse of biomass waste in building materials and its impact on material properties was conducted using five different electronic databases; thirteen articles were selected for this critical review. Biochar was used as a replacement for cement and aggregate in cementitious composites and as an addition in wood polypropylene composites and plasters. The biochar dosages ranged from 0.5% to 40%; in most composites, the addition of biochar increased strength and reduced thermal conductivity and the bulk density of fresh mortars. Also, biochar dosages of 0.5-2% decreased, while dosages of 10-40% increased water absorption and penetration on cementitious composites. The selected studies mainly introduced biochar use in building materials as a means of biomass waste reduction and its reuse for various purposes, while carbon footprint reduction was addressed in only a few of them. Biochar-containing building material's capability of capturing CO2 from the air was also observed (0.033 mmol CO2 g(biochar)-(1) to 0.138 mmol CO2 g(biochar)-(1)). The results also showed that mortars with CO2-unsaturated biochar had better mechanical and physical properties than mortars with CO2-saturated biochar. Selected studies showed biochar-containing building materials have a great potential for carbon footprint reduction. However, there is a lack of comprehensive studies about biochar use in building materials concerning climate change mitigation.
PDF

Similar Articles

ID Score Article
8442 Sirico, A; Belletti, B; Bernardi, P; Malcevschi, A; Pagliari, F; Fornoni, P; Moretti, E Effects of biochar addition on long-term behavior of concrete(2022)
16326 Roychand, R; Li, J; Kilmartin-Lynch, S; Saberian, M; Zhu, JS; Youssf, O; Ngo, T Carbon sequestration from waste and carbon dioxide mineralisation in concrete-A stronger, sustainable and eco-friendly solution to support circular economy(2023)
29674 Song, SY; Liu, ZX; Liu, GM; Cui, XF; Sun, JH Application of biochar cement-based materials for carbon sequestration(2023)
13200 Sirico, A; Bernardi, P; Sciancalepore, C; Belletti, B; Milanese, D; Malcevschi, A Combined effects of biochar and recycled plastic aggregates on mechanical behavior of concrete(2023)Structural Concrete, 24, 5
9908 Wen, JHZ; Wang, BD; Dai, ZD; Shi, XS; Jin, ZH; Wang, HL; Jiang, X New insights into the green cement composites with low carbon footprint: The role of biochar as cement additive/alternative(2023)
6646 Neve, S; Du, J; Barhemat, R; Meng, WA; Bao, Y; Sarkar, D Valorization of Vetiver Root Biochar in Eco-Friendly Reinforced Concrete: Mechanical, Economic, and Environmental Performance(2023)Materials, 16, 6
12947 Khan, K; Aziz, MA; Zubair, M; Amin, MN Biochar Produced from Saudi Agriculture Waste as a Cement Additive for Improved Mechanical and Durability Properties-SWOT Analysis and Techno-Economic Assessment(2022)Materials, 15.0, 15
25471 Kepniak, M; Zalegowski, K; Woyciechowski, P; Pawlowski, J; Nurczynski, J Feasibility of Using Biochar as an Eco-Friendly Microfiller in Polymer Concretes(2022)Polymers, 14, 21
8748 Gomes, SD; Zhou, JL; Zeng, XH; Long, GC Water treatment sludge conversion to biochar as cementitious material in cement composite(2022)
22282 Labianca, C; Zhu, XH; Ferrara, C; Zhang, YY; De Feo, G; Hsu, SC; Tsange, DCW A holistic framework of biochar-augmented cementitious products and general applications: Technical, environmental, and economic evaluation(2024)
Scroll