Knowledge Agora



Similar Articles

Title Recent Advances in the Chemobiological Upcycling of Polyethylene Terephthalate (PET) into Value-Added Chemicals
ID_Doc 29441
Authors Mudondo, J; Lee, HS; Jeong, Y; Kim, TH; Kim, S; Sung, BH; Park, SH; Park, K; Cha, HG; Yeon, YJ; Kim, HT
Title Recent Advances in the Chemobiological Upcycling of Polyethylene Terephthalate (PET) into Value-Added Chemicals
Year 2023
Published Journal Of Microbiology And Biotechnology, 33.0, 1
Abstract Polyethylene terephthalate (PET) is a plastic material commonly applied to beverage packaging used in everyday life. Owing to PET's versatility and ease of use, its consumption has continuously increased, resulting in considerable waste generation. Several physical and chemical recycling processes have been developed to address this problem. Recently, biological upcycling is being actively studied and has come to be regarded as a powerful technology for overcoming the economic issues associated with conventional recycling methods. For upcycling, PET should be degraded into small molecules, such as terephthalic acid and ethylene glycol, which are utilized as substrates for bioconversion, through various degradation processes, including gasification, pyrolysis, and chemical/biological depolymerization. Furthermore, biological upcycling methods have been applied to biosynthesize value-added chemicals, such as adipic acid, muconic acid, catechol, vanillin, and glycolic acid. In this review, we introduce and discuss various degradation methods that yield substrates for bioconversion and biological upcycling processes to produce value-added biochemicals. These technologies encourage a circular economy, which reduces the amount of waste released into the environment.
PDF https://www.jmb.or.kr/journal/download_pdf.php?doi=10.4014/jmb.2208.08048

Similar Articles

ID Score Article
20128 Zimmermann, W Biocatalytic recycling of polyethylene terephthalate plastic(2020)Philosophical Transactions Of The Royal Society A-Mathematical Physical And Engineering Sciences, 378, 2176
29107 Weiland, F; Kohlstedt, M; Wittmann, C Biobased de novo synthesis, upcycling, and recycling - the heartbeat toward a green and sustainable polyethylene terephthalate industry(2024)
28305 Enache, AC; Grecu, I; Samoila, P Polyethylene Terephthalate (PET) Recycled by Catalytic Glycolysis: A Bridge toward Circular Economy Principles(2024)Materials, 17.0, 12
14519 Ghosal, K; Nayak, C Recent advances in chemical recycling of polyethylene terephthalate waste into value added products for sustainable coating solutions - hope vs. hype(2022)Materials Advances, 3, 4
22015 Caputto, MDD; Navarro, R; Valentín, JL; Marcos-Fernández, A Chemical upcycling of poly(ethylene terephthalate) waste: Moving to a circular model(2022)Journal Of Polymer Science, 60.0, 24
9279 Uekert, T; DesVeaux, JS; Singh, A; Nicholson, SR; Lamers, P; Ghosh, T; McGeehan, JE; Carpenter, AC; Beckham, GT Life cycle assessment of enzymatic poly(ethylene terephthalate) recycling(2022)Green Chemistry, 24.0, 17
19969 Damayanti; Wu, HS Strategic Possibility Routes of Recycled PET(2021)Polymers, 13.0, 9
29189 Babaei, M; Jalilian, M; Shahbaz, K Chemical recycling of Polyethylene terephthalate: A mini-review(2024)Journal Of Environmental Chemical Engineering, 12.0, 3
10042 You, SM; Lee, SS; Ryu, MH; Song, HM; Kang, MS; Jung, YJ; Song, EC; Sung, BH; Park, SJ; Joo, JC; Kim, HT; Cha, HG β-Ketoadipic acid production from poly(ethylene terephthalate) waste via chemobiological upcycling(2023)Rsc Advances, 13.0, 21
6877 Lee, S; Lee, YR; Kim, SJ; Lee, JS; Min, K Recent advances and challenges in the biotechnological upcycling of plastic wastes for constructing a circular bioeconomy(2023)
Scroll