Knowledge Agora



Similar Articles

Title Structure-fire-retardant property correlations in biodegradable polymers
ID_Doc 29471
Authors Xue, YJ; Zhang, M; Feng, JB; Zhang, Y; Chevali, V; Song, F; Pan, Z; Peng, H; Zhou, YH; Song, PG
Title Structure-fire-retardant property correlations in biodegradable polymers
Year 2024
Published Applied Physics Reviews, 11.0, 3
Abstract Because of widespread public concern about plastic waste treatment and recycling, there is a global trend toward replacing non-biodegradable polymers with biodegradable polymers. However, the inherent flammability of most biodegradable polymers presents a significant barrier to their potential application, necessitating the rapid development of fire-retardant biodegradable polymers. Herein, three major categories of fire retardants (FRs), including intrinsic FRs, additive FRs, and fire-retardant coatings, especially widely studied additive FRs in the categories of organic, inorganic, and inorganic-organic, are reviewed, revealing how the physical and chemical structures of FRs affect the fire-retardant efficiency of biodegradable polymers and concluding the influencing factors of their fire retardance from the perspective of the physical and chemical structures of FRs. This work provides fundamental data and mechanistic analyses for the fire-retardant parameters of biodegradable polymers by integrating/adding diverse types of FRs, to provide guidance for fabricating highly efficient fire-retardant biodegradable polymer materials and inspiring the development of future research and application of functional biodegradable polymers toward circular economy and greater sustainability.
PDF

Similar Articles

ID Score Article
21655 Ben Omran, KM; Shwika, SI; Vuksanovic, MM; Marinkovic, AD; Jovanovic, A; Prlainovic, N; Vasilski, D Circular Economy Implementation In The Development Of Fire-Retardant Materials Used In Construction, Industry, And General-Purpose Products(2022)Metallurgical & Materials Engineering, 28.0, 2
7190 Barczewski, M; Hejna, A; Andrzejewski, J; Anisko, J; Piasecki, A; Mróz, A; Ortega, Z; Rutkowska, D; Salasinska, K The Recyclability of Fire-Retarded Biobased Polyamide 11 (PA11) Composites Reinforced with Basalt Fibers (BFs): The Influence of Reprocessing on Structure, Properties, and Fire Behavior(2024)Molecules, 29, 13
10829 Ghomi, ER; Khosravi, F; Mossayebi, Z; Ardahaei, AS; Dehaghi, FM; Khorasani, M; Neisiany, RE; Das, O; Marani, A; Mensah, RA; Jiang, L; Xu, Q; Försth, M; Berto, F; Ramakrishna, S The Flame Retardancy of Polyethylene Composites: From Fundamental Concepts to Nanocomposites(2020)Molecules, 25, 21
9420 Jier, M; Bai, ZC; Dai, JF; He, LB; Yin, FX; Lin, ZQ; Zhang, WB; Liu, LA; Qian, LJ; Xiao, YH; Zhan, XX; Song, PA Fabrication of flame-retardant wood plastic composites based on wasted bean dregs with recycled PE via mechanochemical crosslinking(2023)Polymer Composites, 44.0, 9
9789 Leng, YM; Zhao, X; Fu, T; Wang, XL; Wang, YZ Bio-Based Flame-Retardant and Smoke-Suppressing Wood PlasticComposites Enabled by Phytic Acid Tyramine Salt(2022)Acs Sustainable Chemistry & Engineering, 10.0, 15
12373 Klingler, WW; Rougier, V; Huang, ZY; Parida, D; Lehner, S; Casutt, A; Rentsch, D; Hedlund, KB; Barandun, GA; Michaud, V; Gaan, S Recyclable flame retardant phosphonated epoxy based thermosets enabled via a reactive approach(2023)
Scroll