Knowledge Agora



Similar Articles

Title Synthesis and characterization of polyurethane rigid foam by using feedstocks received from renewable and recyclable resources
ID_Doc 29536
Authors Sarim, M; Nikje, MMA; Dargah, M
Title Synthesis and characterization of polyurethane rigid foam by using feedstocks received from renewable and recyclable resources
Year 2023
Published Journal Of Porous Materials, 30.0, 4
Abstract The mimicry reactions used in the industrial field based on pure materials to obtain products is very important in order to achieve a circular economy and a green environment. This time around, the idea is that all raw materials are wastes. In addition to synthesizing biodiesel, this study aims to synthesize polyurethane rigid foams from recyclable materials such as liquid wastes and solid plastic wastes. The study follows preparation of a new class of biopolyols by reacting a mixture of crude glycerin-based polyol and epoxidized used cooking oil with polyethylene terephthalate, polyurethane, and bisphenol-polycarbonate wastes. Then, fabrication of polyurethane rigid foams by blending synthesized biopolyols with commercial polyol at ratios 20%, 40%, and 60% occurs. The properties of biopolyols and fabricated rigid foams was investigated by nuclear magnetic resonance, infrared spectrometer, thermal gravimetric analyzer, scanning electron microscope, and dynamic mechanical thermal analyzer. The results show that the biopolyols are valuable products for polyurethane manufactures. Moreover, the fabricated rigid foams show nonsignificant changes at the commercial and industrial level.
PDF

Similar Articles

ID Score Article
13106 Sarim, M; Nikje, MMA; Dargahi, M Preparation and Characterization of Polyurethane Rigid Foam Nanocomposites from Used Cooking Oil and Perlite(2023)
27235 Kuranska, M; Leszczynska, M; Kubacka, J; Prociak, A; Ryszkowska, J Effects of Modified Used Cooking Oil on Structure and Properties of Closed-Cell Polyurethane foams(2020)Journal Of Polymers And The Environment, 28.0, 10
16832 Kuranska, M; Leszczynska, M; Malewska, E; Prociak, A; Ryszkowska, J Implementation of Circular Economy Principles in the Synthesis of Polyurethane Foams(2020)Polymers, 12, 9
3648 Kuranska, M; Benes, H; Kockova, O; Kucala, M; Malewska, E; Schmidt, B; Michalowski, S; Zemla, M; Prociak, A Rebiopolyols - New components for the synthesis of polyurethane biofoams in line with the circular economy concept(2024)
9557 Leszczynska, M; Malewska, E; Ryszkowska, J; Kuranska, M; Gloc, M; Leszczynski, MK; Prociak, A Vegetable Fillers and Rapeseed Oil-Based Polyol as Natural Raw Materials for the Production of Rigid Polyurethane Foams(2021)Materials, 14.0, 7
23887 Amundarain, I; Miguel-Fernández, R; Asueta, A; García-Fernández, S; Arnaiz, S Synthesis of Rigid Polyurethane Foams Incorporating Polyols from Chemical Recycling of Post-Industrial Waste Polyurethane Foams(2022)Polymers, 14, 6
20274 Kuranska, M; Polaczek, K; Auguscik-Królikowska, M; Prociak, A; Ryszkowska, J Open-cell polyurethane foams based on modified used cooking oil(2020)Polimery, 65, 3
13977 Paciorek-Sadowska, J; Borowicz, M; Chmiel, E; Lubczak, J Use of a Mixture of Polyols Based on Metasilicic Acid and Recycled PLA for Synthesis of Rigid Polyurethane Foams Susceptible to Biodegradation(2021)International Journal Of Molecular Sciences, 22, 1
21897 Njuguna, JK; Muchiri, P; Mwema, FM; Karuri, NW; Herzog, M; Dimitrov, K Determination of thermo-mechanical properties of recycled polyurethane from glycolysis polyol(2021)
9016 Ivdre, A; Abolins, A; Volkovs, N; Vevere, L; Paze, A; Makars, R; Godina, D; Rizikovs, J Rigid Polyurethane Foams as Thermal Insulation Material from Novel Suberinic Acid-Based Polyols(2023)Polymers, 15.0, 14
Scroll