Knowledge Agora



Similar Articles

Title Integrated recycling of valuable elements from spent LiFePO4 batteries: a green closed-loop process
ID_Doc 29579
Authors Zhou, HX; Zhang, Y; Li, LQ; Cao, ZF
Title Integrated recycling of valuable elements from spent LiFePO4 batteries: a green closed-loop process
Year 2023
Published Green Chemistry, 25.0, 19
Abstract The harmless disposal and resourceful recovery of spent lithium-ion batteries is an inevitable choice to protect the environment, conserve resources and promote the development of the circular economy. A systematic, green, and sustainable recycling process for waste LiFePO4 batteries is proposed based on malic acid. The method employs naturally degradable organic acids instead of traditional inorganic acid leaching, reducing the negative impact on the environment. Under optimized conditions, 99.12% Li is extracted, while less than 1% Fe is leached. This fraction of iron ions is cleverly employed as a catalyst to promote the leaching efficiency of lithium. Furthermore, the iron by-products from the purification process are used for As(iii) adsorption and show surprising arsenic removal properties. A minor amount of P in the leachate is recovered as Li3PO4, and most Li is collected as Li2CO3 with 99.63% purity. Ultimately, the LiFePO4 cathode material is regenerated from the obtained Li2CO3 product and FePO4 residue. Compared with the traditional method, this process merits efficient lithium-iron separation, environmental friendliness, and economic efficiency.
PDF

Similar Articles

ID Score Article
10839 Chen, ZM; Shen, CQ; Liu, FP; Wang, JL Selective Separation and Recovery of Li from Spent LiFePO4 Cathode Materials by Oxidation Roasting Followed by Low-Acid Pressure Leaching(2023)Metals, 13, 11
17170 Yadav, P; Jie, CJ; Tan, S; Srinivasan, M Recycling of cathode from spent lithium iron phosphate batteries(2020)
10525 Liu, K; Wang, JX; Wang, MM; Zhang, QZ; Cao, Y; Huang, LB; Valix, M; Tsang, DCW Low-carbon recycling of spent lithium iron phosphate batteries via a hydro-oxygen repair route(2023)Green Chemistry, 25, 17
9653 Chen, XP; Yuan, L; Yan, SX; Ma, X Self-activation of Ferro-chemistry based advanced oxidation process towards in-situ recycling of spent LiFePO4 batteries(2023)
24630 Peng, C; Liu, FP; Aji, AT; Wilson, BP; Lundström, M Extraction of Li and Co from industrially produced Li-ion battery waste - Using the reductive power of waste itself(2019)
8504 Du, H; Kang, YQ; Li, CL; Zhao, Y; Wozny, J; Li, T; Tian, Y; Lu, J; Wang, L; Kang, FY; Tavajohi, N; Li, BH Easily recyclable lithium-ion batteries: Recycling-oriented cathode design using highly soluble LiFeMnPO4 with a water-soluble binder(2023)Battery Energy, 2.0, 4
21099 Aannir, M; Hakkou, R; Levard, C; Taha, Y; Ghennioui, A; Rose, J; Saadoune, I Towards a closed loop recycling process of end-of-life lithium-ion batteries: Recovery of critical metals and electrochemical performance evaluation of a regenerated LiCoO2(2023)
10397 Liu, JD; Mak, TY; Meng, Z; Wang, XY; Cao, YL; Lu, ZG; Suen, DWS; Lu, XY; Tang, YY Efficient recovery of lithium as Li2CO3 and cobalt as Co3O4 from spent lithium-ion batteries after leaching with p-toluene sulfonic acid(2023)
32830 Marchese, D; Giosuè, C; Staffolani, A; Conti, M; Orcioni, S; Soavi, F; Cavalletti, M; Stipa, P An Overview of the Sustainable Recycling Processes Used for Lithium-Ion Batteries(2024)Batteries-Basel, 10, 1
29997 Yanamandra, K; Pinisetty, D; Daoud, A; Gupta, N Recycling of Li-Ion and Lead Acid Batteries: A Review(2022)Journal Of The Indian Institute Of Science, 102.0, 1
Scroll