Knowledge Agora



Similar Articles

Title Renewable hydrogen anaerobic fermentation technology: Problems and potentials
ID_Doc 29720
Authors Fagbohungbe, MO; Komolafe, AO; Okere, UV
Title Renewable hydrogen anaerobic fermentation technology: Problems and potentials
Year 2019
Published
Abstract Hydrogen technology is essential to the decarbonisation of global economies because it addresses the variability and storage limitation of renewable energy. Several research literatures on hydrogen technology have focused on energy systems with minimum attention given to other fossil fuel driven sectors such as chemical and material production. For effective decarbonisation, the application of hydrogen in global economies must extend beyond the use of energy systems. Renewable hydrogen anaerobic fermentation is a suitable technology for converting the hydrogen substrate into gaseous fuel and precursors for material and green chemical production. The technology leverages on the well-established anaerobic digestion (AD) technology and can be selectively operated for a specific product. Although there are some problems associated with renewable hydrogen anaerobic fermentation, studies show different technological advancements in mitigating these challenges. This review focuses on the technological breakthroughs and limitations associated with renewable hydrogen anaerobic fermentation and provides insights on other products that could be derived from it, especially for a circular economy and the emerging market of green chemicals, sustainable agriculture, and bio-based product development.
PDF https://eprints.soton.ac.uk/434080/1/Renewable_hydrogen_anaerobic_fermentation_technology_Problems_and_potentials.docx

Similar Articles

ID Score Article
11051 Capson-Tojo, G; Rouez, M; Crest, M; Steyer, JP; Delgenès, JP; Escudié, R Food waste valorization via anaerobic processes: a review(2016)Reviews In Environmental Science And Bio-Technology, 15, 3
10715 Mohanakrishna, G; Sneha, NP; Rafi, SM; Sarkar, O Dark fermentative hydrogen production: Potential of food waste as future energy needs(2023)
24700 Anjum, S; Aslam, S; Hussain, N; Bilal, M; Boczkaj, G; Smulek, W; Jesionowski, T; Iqbal, HMN Bioreactors and biophoton-driven biohydrogen production strategies(2023)International Journal Of Hydrogen Energy, 48, 55
14755 Sarkar, O; Modestra, JA; Rova, U; Christakopoulos, P; Matsakas, L Waste-Derived Renewable Hydrogen and Methane: Towards a Potential Energy Transition Solution(2023)Fermentation-Basel, 9, 4
8258 Nagarajan, S; Jones, RJ; Oram, L; Massanet-Nicolau, J; Guwy, A Intensification of Acidogenic Fermentation for the Production of Biohydrogen and Volatile Fatty Acids-A Perspective(2022)Fermentation-Basel, 8.0, 7
19855 Shanmugam, S; Mathimani, T; Rajendran, K; Sekar, M; Rene, ER; Chi, NTL; Ngo, HH; Pugazhendhi, A Perspective on the strategies and challenges in hydrogen production from food and food processing wastes(2023)
10455 Sevillano, CA; Pesantes, AA; Carpio, EP; Martínez, EJ; Gómez, X Anaerobic Digestion for Producing Renewable Energy-The Evolution of This Technology in a New Uncertain Scenario(2021)Entropy, 23, 2
9327 Menzel, T; Neubauer, P; Junne, S Role of Microbial Hydrolysis in Anaerobic Digestion(2020)Energies, 13.0, 21
22357 Tiwari, A; Nakamura, K Closing the loop on biohydrogen production: A critical review on the post-fermentation broth management techniques(2024)
3155 Yang, ET; Chon, K; Kim, KY; Le, GTH; Nguyen, HY; Le, TTQ; Nguyen, H; Jae, MR; Ahmad, I; Oh, SE; Chae, KJ Pretreatments of lignocellulosic and algal biomasses for sustainable biohydrogen production: Recent progress, carbon neutrality, and circular economy(2023)
Scroll