Knowledge Agora



Similar Articles

Title Strengthening Regenerated Cellulose Fibers Sourced from Recycled Cotton T-Shirt Using Glucaric Acid for Antiplasticization
ID_Doc 29942
Authors Biswas, MC; Dwyer, R; Jimenez, J; Su, HC; Ford, E
Title Strengthening Regenerated Cellulose Fibers Sourced from Recycled Cotton T-Shirt Using Glucaric Acid for Antiplasticization
Year 2021
Published Polysaccharides, 2.0, 1
Abstract The recycling of cellulose from cotton textiles would minimize the use of virgin crop fibers, but recycled polymers are generally inferior in mechanical performance to those made from virgin resins. This challenge prompted the investigation of biobased additives that were capable of improving the mechanical properties of fibers by means of antiplasticizing additives. In this study, regenerated cellulose (RC) fibers were spun from cellulose found in cotton T-shirts, and fibers were mechanically strengthened with glucaric acid (GA), a nontoxic product of fermentation. The recycled pulp was activated using aqueous sodium hydroxide and then followed by acid neutralization, prior to the direct dissolution in lithium chloride/N,N-dimethylacetamide (LiCl/DMAc) at 3 wt.% cellulose. At 10% (w/w) GA, the tensile modulus and strength of regenerated cellulose from recycled cotton fibers increased five-fold in contrast to neat fibers without GA. The highest modulus and tenacity values of 664 cN/dtex and of 9.7 cN/dtex were reported for RC fibers containing GA.
PDF https://www.mdpi.com/2673-4176/2/1/10/pdf?version=1614852746

Similar Articles

ID Score Article
7182 Haslinger, S; Hummel, M; Anghelescu-Hakala, A; Määttänen, M; Sixta, H Upcycling of cotton polyester blended textile waste to new man-made cellulose fibers(2019)
8534 Costa, C; Viana, A; Silva, C; Marques, EF; Azoia, NG Recycling of textile wastes, by acid hydrolysis, into new cellulosic raw materials(2022)
21327 Björquist, S; Aronsson, J; Henriksson, G; Persson, A Textile qualities of regenerated cellulose fibers from cotton waste pulp(2018)Textile Research Journal, 88.0, 21
27591 Kim, T; Kim, D; Park, Y Recent progress in regenerated fibers for "green" textile products(2022)
10302 Aliotta, L; Gigante, V; Coltelli, MB; Cinelli, P; Lazzeri, A Evaluation of Mechanical and Interfacial Properties of Bio-Composites Based on Poly(Lactic Acid) with Natural Cellulose Fibers(2019)International Journal Of Molecular Sciences, 20, 4
68836 Sanchis-Sebastiá, M; Ruuth, E; Stigsson, L; Galbe, M; Wallberg, O Novel sustainable alternatives for the fashion industry: A method of chemically recycling waste textiles via acid hydrolysis(2021)
9259 Sathasivam, T; Sugiarto, S; Yew, MPY; Oh, XY; Chan, SY; Chan, BQY; Tim, MJ; Kai, D Transforming textile waste into nanocellulose for a circular future(2024)Nanoscale, 16.0, 30
5591 Kostic, M; Imani, M; Ivanovska, A; Radojevic, V; Dimic-Misic, K; Barac, N; Stojanovic, D; Janackovic, D; Uskokovic, P; Barcelo, E; Gane, P Extending waste paper, cellulose and filler use beyond recycling by entering the circular economy creating cellulose-CaCO3 composites reconstituted from ionic liquid(2022)Cellulose, 29, 9
66573 Suen, DWS; Chan, EMH; Lau, YY; Lee, RHP; Tsang, PWK; Ouyang, SB; Tsang, CW Sustainable Textile Raw Materials: Review on Bioprocessing of Textile Waste via Electrospinning(2023)Sustainability, 15, 15
7736 Mihalyi, S; Tagliavento, M; Boschmeier, E; Archodoulaki, VM; Bartl, A; Quartinello, F; Guebitz, GM Simultaneous saccharification and fermentation with Weizmannia coagulans for recovery of synthetic fibers and production of lactic acid from blended textile waste(2023)
Scroll