Knowledge Agora



Similar Articles

Title Direct Recycling Technology for Spent Lithium-Ion Batteries: Limitations of Current Implementation
ID_Doc 30033
Authors Prazanová, A; Plachy, Z; Koci, J; Fridrich, M; Knap, V
Title Direct Recycling Technology for Spent Lithium-Ion Batteries: Limitations of Current Implementation
Year 2024
Published Batteries-Basel, 10.0, 3
Abstract The significant deployment of lithium-ion batteries (LIBs) within a wide application field covering small consumer electronics, light and heavy means of transport, such as e-bikes, e-scooters, and electric vehicles (EVs), or energy storage stationary systems will inevitably lead to generating notable amounts of spent batteries in the coming years. Considering the environmental perspective, material resource sustainability, and terms of the circular economy, recycling represents a highly prospective strategy for LIB end-of-life (EOL) management. In contrast with traditional, large-scale, implemented recycling methods, such as pyrometallurgy or hydrometallurgy, direct recycling technology constitutes a promising solution for LIB EOL treatment with outstanding environmental benefits, including reduction of energy consumption and emission footprint, and weighty economic viability. This work comprehensively assesses the limitations and challenges of state-of-the-art, implemented direct recycling methods for spent LIB cathode and anode material treatment. The introduced approaches include solid-state sintering, electrochemical relithiation in organic and aqueous electrolytes, and ionothermal, solution, and eutectic relithiation methods. Since most direct recycling techniques are still being developed and implemented primarily on a laboratory scale, this review identifies and discusses potential areas for optimization to facilitate forthcoming large-scale industrial implementation.
PDF https://www.mdpi.com/2313-0105/10/3/81/pdf?version=1709107233

Similar Articles

ID Score Article
11073 Cao, Y; Li, JF; Ji, HC; Wei, XJ; Zhou, GM; Cheng, HM A review of direct recycling methods for spent lithium-ion batteries(2024)
6165 Hantanasirisakul, K; Sawangphruk, M Sustainable Reuse and Recycling of Spent Li-Ion batteries from Electric Vehicles: Chemical, Environmental, and Economical Perspectives(2023)Global Challenges, 7, 4
4416 Mossali, E; Picone, N; Gentilini, L; Rodrìguez, O; Pérez, JM; Colledani, M Lithium-ion batteries towards circular economy: A literature review of opportunities and issues of recycling treatments(2020)
16765 Roy, JJ; Rarotra, S; Krikstolaityte, V; Zhuoran, KW; Cindy, YDI; Tan, XY; Carboni, M; Meyer, D; Yan, QY; Srinivasan, M Green Recycling Methods to Treat Lithium-Ion Batteries E-Waste: A Circular Approach to Sustainability(2022)Advanced Materials, 34, 25
9495 Biswal, BK; Zhang, B; Tran, PTM; Zhang, JJ; Balasubramanian, R Recycling of spent lithium-ion batteries for a sustainable future: recent advancements(2024)Chemical Society Reviews, 53.0, 11
7743 Golmohammadzadeh, R; Faraji, F; Jong, B; Pozo-Gonzalo, C; Banerjee, PC Current challenges and future opportunities toward recycling of spent lithium-ion batteries(2022)
13521 Tembo, PM; Dyer, C; Subramanian, V Lithium-ion battery recycling-a review of the material supply and policy infrastructure(2024)Npg Asia Materials, 16, 1
8976 Zanoletti, A; Carena, E; Ferrara, C; Bontempi, E; Burheim, OS A Review of Lithium-Ion Battery Recycling: Technologies, Sustainability, and Open Issues(2024)Batteries-Basel, 10.0, 1
12349 Wu, XX; Liu, YH; Wang, JX; Tan, YH; Liang, Z; Zhou, GM Toward Circular Energy: Exploring Direct Regeneration for Lithium-Ion Battery Sustainability(2024)Advanced Materials, 36.0, 32
3026 Velázquez-Martínez, O; Valio, J; Santasalo-Aarnio, A; Reuter, M; Serna-Guerrero, R A Critical Review of Lithium-Ion Battery Recycling Processes from a Circular Economy Perspective(2019)Batteries-Basel, 5, 4
Scroll