Knowledge Agora



Similar Articles

Title Green management of wet olive pomace by means of ultrafiltration of an aqueous extract of phenolic compounds
ID_Doc 30057
Authors Sánchez-Arévalo, CM; Vincent-Vela, MC; Alvarez-Blanco, S
Title Green management of wet olive pomace by means of ultrafiltration of an aqueous extract of phenolic compounds
Year 2023
Published
Abstract Wet olive pomace is a major by-product generated by olive mills. To contribute to the circular economy of the olive industry, the recovery of interesting compounds from wet olive pomace was assessed. To that end, a previously optimized solid-liquid extraction, only employing water as the extractant, was first applied to the wet olive pomace. Afterwards, an ultrafiltration process to treat the obtained extract was developed. Several membranes (UP005, UH030, UH050, and UP150, from Microdyn Nadir) were studied, in a wide range of cross-flow velocities (1.5-3.5 m/s) and transmembrane pressures (0.75-5.5 bar). By a thorough characterization of the ultrafiltration streams by LC-ESI-QToF-MS, it was possible to describe the evolution of the rejection of 29 phenolic compounds. Some adsorption processes were also observed in the ultrafiltration process. The UP005 and UH030 membranes displayed satisfactory values of permeate flux and rejection. Both membranes efficiently retained a high fraction of the total solids, chemical oxygen demand, and color. On the contrary, the phenolic compounds were obtained in the ultrafiltration permeate, which constitutes a source of antioxidant molecules with applications in cosmetics, pharmacy, and nutraceutics.
PDF https://doi.org/10.1016/j.eti.2023.103385

Similar Articles

ID Score Article
9619 Sánchez-Arévalo, CM; Iborra-Clar, A; Vincent-Vela, MC; Alvarez-Blanco, S Solvent-resistant ultrafiltration to recover bioactive compounds from wet olive pomace extracts(2023)
15387 Cifuentes-Cabezas, M; Carbonell-Alcaina, C; Vincent-Vela, MC; Mendoza-Roca, JA; Alvarez-Blanco, S Comparison of different ultrafiltration membranes as first step for the recovery of phenolic compounds from olive-oil washing wastewater(2021)
26397 Abdoul-Latif, FM; Ainane, A; Hachi, T; Abbi, R; Achira, M; Abourriche, A; Brulé, M; Ainane, T Materials Derived from Olive Pomace as Effective Bioadsorbents for the Process of Removing Total Phenols from Oil Mill Effluents(2023)Molecules, 28, 11
24707 Tapia-Quirós, P; Montenegro-Landívar, MF; Reig, M; Vecino, X; Saurina, J; Granados, M; Cortina, JL Integration of Nanofiltration and Reverse Osmosis Technologies in Polyphenols Recovery Schemes from Winery and Olive Mill Wastes by Aqueous-Based Processing(2022)Membranes, 12, 3
21662 Russo, E; Spallarossa, A; Comite, A; Pagliero, M; Guida, P; Belotti, V; Caviglia, D; Schito, AM Valorization and Potential Antimicrobial Use of Olive Mill Wastewater (OMW) from Italian Olive Oil Production(2022)Antioxidants, 11.0, 5
29929 Tapia-Quirós, P; Montenegro-Landívar, MF; Reig, M; Vecino, X; Alvarino, T; Cortina, JL; Saurina, J; Granados, M Olive Mill and Winery Wastes as Viable Sources of Bioactive Compounds: A Study on Polyphenols Recovery(2020)Antioxidants, 9.0, 11
25978 Tapia-Quiros, P; Montenegro-Landivar, MF; Vecino, X; Alvarino, T; Cortina, JL; Saurina, J; Granados, M; Reig, M A green approach to phenolic compounds recovery from olive mill and winery wastes(2022)
12601 Cifuentes-Cabezas, M; Mendoza-Roca, JA; Vincent-Vela, MC; Alvarez-Blanco, S Management of reject streams from hybrid membrane processes applied to phenolic compounds removal from olive mill wastewater by adsorption/desorption and biological processes(2022)
8943 Grigoletto, I; Salas, PG; Valli, E; Bendini, A; Ferioli, F; Pasini, F; Villasclaras, SS; Garcia-Ruiz, R; Toschi, TG; Romero, A HPLC-MS/MS Phenolic Characterization of Olive Pomace Extracts Obtained Using an Innovative Mechanical Approach(2024)Foods, 13.0, 2
13548 Martins, VFR; Ribeiro, TB; Lopes, AI; Pintado, ME; Morais, RMSC; Morais, AMMB Comparison among Different Green Extraction Methods of Polyphenolic Compounds from Exhausted Olive Oil Pomace and the Bioactivity of the Extracts(2024)Molecules, 29, 9
Scroll