Knowledge Agora



Similar Articles

Title Sustainable syngas production: Economic and circular economy benefits of PET waste gasification
ID_Doc 3166
Authors Okoye, IJ; Zein, SH; Oko, E; Jalil, AA
Title Sustainable syngas production: Economic and circular economy benefits of PET waste gasification
Year 2024
Published
Abstract This paper promotes awareness of the circular economy as a superior waste disposal system alternative. The novelty of this study is to model cleaner energy generation from the gasification of polyethene terephthalate (PET) waste accompanied by a detailed analysis on the economic feasibility. In the approximate analysis of PET, the percentage values for Ash and hydrogen were low (0 and 4.21, respectively). This parameter significantly impacted the Ash and hydrogen contents of the output gas, as it directly influenced the PET feedstock to a more excellent heating value (23.34 MJ/kg) and lower heating value (10.63 MJ/kg). Temperature and pressure are treated as free variables throughout each block during the gasification procedures. A sensitivity study revealed that the PET moisture content has no significant effect on the product composition. The economic analysis indicated that the gasification process could be economically viable. The economic analysis of the process considered the comprehensive evaluation of the plant's financial aspects. The economic evaluation indicated that the facility would reach the break-even point by the end of its third year of operation, demonstrating its economic viability, with an NPV of 77,574,506.37 pound and an ROI of 40.1% for the suggested 25-year operational period of the facility.
PDF

Similar Articles

ID Score Article
28294 Zabaniotou, A; Vaskalis, I Economic Assessment of Polypropylene Waste (PP) Pyrolysis in Circular Economy and Industrial Symbiosis(2023)Energies, 16.0, 2
14890 Williams, JM; Bourtsalas, AC Assessment of Co-Gasification Methods for Hydrogen Production from Biomass and Plastic Wastes(2023)Energies, 16, 22
1125 Klavins, M; Bisters, V; Burlakovs, J Small Scale Gasification Application and Perspectives in Circular Economy(2018)Environmental And Climate Technologies, 22, 1
22395 Chasioti, A; Zabaniotou, A An Industrial Perspective for Sustainable Polypropylene Plastic Waste Management via Catalytic Pyrolysis-A Technical Report(2024)Sustainability, 16.0, 14
6953 Rispoli, AL; Iaquaniello, G; Salladini, A; Verdone, N; Pepe, MR; Borgogna, A; Vilardi, G Simultaneous decarbonisation of steel and Oil&Gas industry by MSW gasification: Economic and environmental analysis(2021)
2554 Frantzi, D; Zabaniotou, A Waste-Based Intermediate Bioenergy Carriers: Syngas Production via Coupling Slow Pyrolysis with Gasification under a Circular Economy Model(2021)Energies, 14, 21
4190 Gracida-Alvarez, UR; Xu, H; Benavides, PT; Wang, MC; Hawkins, TR Circular Economy Sustainability Analysis Framework for Plastics: Application for Poly(ethylene Terephthalate) (PET)(2023)Acs Sustainable Chemistry & Engineering, 11, 2
14540 Marczak, H Analysis of the Energetic Use of Fuel Fractions Made of Plastic Waste(2019)Journal Of Ecological Engineering, 20, 8
15503 Antelava, A; Jablonska, N; Constantinou, A; Manos, G; Salaudeen, SA; Dutta, A; Al-Salem, SM Energy Potential of Plastic Waste Valorization: A Short Comparative Assessment of Pyrolysis versus Gasification(2021)Energy & Fuels, 35, 5
27860 Urciuolo, M; Migliaccio, R; Chirone, R; Bareschino, P; Mancusi, E; Pepe, F; Ruoppolo, G Thermal and Catalytic Pyrolysis of Real Plastic Solid Waste as a Sustainable Strategy for Circular Economy(2023)Combustion Science And Technology, 195.0, 14
Scroll