Knowledge Agora



Similar Articles

Title Electric vehicle battery technologies: From present state to future systems
ID_Doc 32525
Authors Manzetti, S; Mariasiu, F
Title Electric vehicle battery technologies: From present state to future systems
Year 2015
Published
Abstract Electric and hybrid vehicles are associated with green technologies and a reduction in greenhouse emissions due to their low emissions of greenhouse gases and fuel-economic benefits over gasoline and diesel vehicles. Recent analyses show nevertheless that electric vehicles contribute to the increase in greenhouse emissions through their excessive need for power sources, particularly in countries with limited availability of renewable energy sources, and result in a net contribution and increase in greenhouse emissions across the European continent. The chemical and electronic components of car batteries and their waste management require also a major investment and development of recycling technologies, to limit the dispersion of electric waste materials in the environment. With an increase in fabrication and consumption of battery technologies and multiplied production of electric vehicles worldwide in recent years, a full review of the cradle-to-grave characteristics of the battery units in electric vehicles and hybrid cars is important. The inherent materials and chemicals for production and the resulting effect on waste-management policies across the European Union are therefore reported here for the scope of updating legislations in context with the rapidly growing sales of electric and hybrid vehicles across the continent. This study provides a cradle-to-grave analysis of the emerging technologies in the transport sector, with an assessment of green chemistries as novel green energy sources for the electric vehicle and microelectronics portable energy landscape. Additionally, this work envisions and surveys the future development of biological systems for energy production, in the view of biobatteries. This work is of critical importance to legislative groups in the European Union for evaluating the life-cycle impact of electric and hybrid vehicle batteries on the environment and for establishing new legislations in context with waste handling of electric and hybrid vehicles and sustain new innovations in the field of sustainable portable energy. (C) 2015 Elsevier Ltd. All rights reserved.
PDF

Similar Articles

ID Score Article
22566 Prates, L; Karthe, D; Zhang, LL; Wang, LL; O'Connor, J; Lee, H; Dornack, C Sustainability for all? The challenges of predicting and managing the potential risks of end-of-life electric vehicles and their batteries in the Global South(2023)Environmental Earth Sciences, 82.0, 6
64647 Oliveri, LM; D'Urso, D; Trapani, N; Chiacchio, F Electrifying Green Logistics: A Comparative Life Cycle Assessment of Electric and Internal Combustion Engine Vehicles(2023)Energies, 16, 23
26882 Martins, LS; Guimaraes, LF; Botelho, AB; Tenorio, JAS; Espinosa, DCR Electric car battery: An overview on global demand, recycling and future approaches towards sustainability(2021)
25378 D'Adamo, I; Rosa, P A Structured Literature Review on Obsolete Electric Vehicles Management Practices(2019)Sustainability, 11, 23
24918 Amusa, HK; Sadiq, M; Alam, G; Alam, R; Siefan, A; Ibrahim, H; Raza, A; Yildiz, B Electric vehicle batteries waste management and recycling challenges: a comprehensive review of green technologies and future prospects(2024)Journal Of Material Cycles And Waste Management, 26, 4
8995 Bobba, S; Bianco, I; Eynard, U; Carrara, S; Mathieux, F; Blengini, GA Bridging Tools to Better Understand Environmental Performances and Raw Materials Supply of Traction Batteries in the Future EU Fleet(2020)Energies, 13.0, 10
7603 Rufino, CA Jr; Sanseverino, ER; Gallo, P; Koch, D; Diel, S; Walter, G; Trilla, L; Ferreira, VJ; Pérez, GB; Kotak, Y; Eichman, J; Schweiger, HG; Zanin, H Towards to Battery Digital Passport: Reviewing Regulations and Standards for Second-Life Batteries(2024)Batteries-Basel, 10, 4
16982 Obrecht, M; Singh, R; Zorman, T Conceptualizing a new circular economy feature - storing renewable electricity in batteries beyond EV end-of-life: the case of Slovenia(2022)International Journal Of Productivity And Performance Management, 71, 3
23752 Glöser-Chahoud, S; Huster, S; Rosenberg, S; Schultmann, F Return Rates and Recovery Options of Used Electric Vehicle Traction Batteries in Germany(2021)Chemie Ingenieur Technik, 93, 11
16420 Akram, MN; Abdul-Kader, W Sustainable Development Goals and End-of-Life Electric Vehicle Battery: Literature Review(2023)Batteries-Basel, 9, 7
Scroll