Knowledge Agora



Similar Articles

Title Biomass-Derived Carbon Materials for Advanced Metal-Ion Hybrid Supercapacitors: A Step Towards More Sustainable Energy
ID_Doc 33346
Authors Shah, SS
Title Biomass-Derived Carbon Materials for Advanced Metal-Ion Hybrid Supercapacitors: A Step Towards More Sustainable Energy
Year 2024
Published Batteries-Basel, 10.0, 5
Abstract Modern research has made the search for high-performance, sustainable, and efficient energy storage technologies a main focus, especially in light of the growing environmental and energy-demanding issues. This review paper focuses on the pivotal role of biomass-derived carbon (BDC) materials in the development of high-performance metal-ion hybrid supercapacitors (MIHSCs), specifically targeting sodium (Na)-, potassium (K)-, aluminium (Al)-, and zinc (Zn)-ion-based systems. Due to their widespread availability, renewable nature, and exceptional physicochemical properties, BDC materials are ideal for supercapacitor electrodes, which perfectly balance environmental sustainability and technological advancement. This paper delves into the synthesis, functionalization, and structural engineering of advanced biomass-based carbon materials, highlighting the strategies to enhance their electrochemical performance. It elaborates on the unique characteristics of these carbons, such as high specific surface area, tuneable porosity, and heteroatom doping, which are pivotal in achieving superior capacitance, energy density, and cycling stability in Na-, K-, Al-, and Zn-ion hybrid supercapacitors. Furthermore, the compatibility of BDCs with metal-ion electrolytes and their role in facilitating ion transport and charge storage mechanisms are critically analysed. Novelty arises from a comprehensive comparison of these carbon materials across metal-ion systems, unveiling the synergistic effects of BDCs' structural attributes on the performance of each supercapacitor type. This review also casts light on the current challenges, such as scalability, cost-effectiveness, and performance consistency, offering insightful perspectives for future research. This review underscores the transformative potential of BDC materials in MIHSCs and paves the way for next-generation energy storage technologies that are both high-performing and ecologically friendly. It calls for continued innovation and interdisciplinary collaboration to explore these sustainable materials, thereby contributing to advancing green energy technologies.
PDF https://www.mdpi.com/2313-0105/10/5/168/pdf?version=1716196761

Similar Articles

ID Score Article
14790 Mohamed, MM; Shah, SS; Hakeem, AS; Javid, M; Aziz, MA; Yamani, ZH A Comprehensive Evaluation of Biomass-Derived Activated Carbon Materials for Electrochemical Applications in Zinc-Ion Hybrid Supercapacitors(2024)Acs Applied Energy Materials, 7, 17
10672 Krishnan, SG; Arulraj, A; Jagadish, P; Khalid, M; Nasrollahzadeh, M; Fen, R; Yang, CC; Hegde, G Pore size matters!-a critical review on the supercapacitive charge storage enhancement of biocarbonaceous materials(2023)Critical Reviews In Solid State And Materials Sciences, 48, 1
8795 Mamani, A; Barreda, D; Sardella, MF; Bavio, M; Blanco, C; González, Z; Santamaría, R Fe-doped biomass-derived activated carbons as sustainable electrode materials in supercapacitors using different electrolytes(2024)
23425 Jafari, M; Botte, GG Sustainable Green Route for Activated Carbon Synthesis from Biomass Waste for High-Performance Supercapacitors(2024)Acs Omega, 9, 11
27775 Gao, M; Pan, SY; Chen, WC; Chiang, PC A cross-disciplinary overview of naturally derived materials for electrochemical energy storage(2018)
24880 Park, S; Kim, J; Kwon, K A review on biomass-derived N-doped carbons as electrocatalysts in electrochemical energy applications(2022)
8583 Chodankar, NR; Patil, SJ; Hwang, SK; Shinde, PA; Karekar, SV; Raju, GSR; Ranjith, KS; Olabi, AG; Dubal, DP; Huh, YS; Han, YK Refurbished carbon materials from waste supercapacitors as industrial-grade electrodes: Empowering electronic waste(2022)
19475 Ngidi, NPD; Koekemoer, AF; Ndlela, SS Application of metal oxide/porous carbon nanocomposites in electrochemical capacitors: A review(2024)
7114 Al Haj, Y; Mousavihashemi, S; Robertson, D; Borghei, M; Pääkkönen, T; Rojas, OJ; Kontturi, E; Kallio, T; Vapaavuori, J Biowaste-derived electrode and electrolyte materials for flexible supercapacitors(2022)
22899 Zago, S; Scarpetta-Pizo, LC; Zagal, JH; Specchia, S PGM-Free Biomass-Derived Electrocatalysts for Oxygen Reduction in Energy Conversion Devices: Promising Materials(2024)Electrochemical Energy Reviews, 7.0, 1
Scroll