Knowledge Agora



Similar Articles

Title Co-recycling of natural and synthetic carbon materials for a sustainable circular economy
ID_Doc 3497
Authors Vela, IC; Vilches, TB; Berndes, G; Johnsson, F; Thunman, H
Title Co-recycling of natural and synthetic carbon materials for a sustainable circular economy
Year 2022
Published
Abstract Circular economy approaches are commonly depicted by two cycles, where the biological cycle is associated with regeneration in the biosphere and the technical cycle with reuse, refurbishment, and recycling to maintain value and maximize material recovery. This work, instead, presents an alternative vision to the management of carbonbased materials that integrates the two cycles and enables the phasing-out of fossil carbon from the material system. The aim is to investigate the benefits and global potential of a co-recycling system, as an alternative to conventional recycling systems that separate biomass-based materials (e.g., wood, paper) from fossil-based materials (e.g., plastics). Thermochemical recycling technologies enable the conversion of carbon-based waste materials into high-quality synthetic products, promoting circularity and avoiding carbon losses such as carbon emissions and waste accumulation in landfills and nature. Here, the construction and analysis of co-recycling scenarios show how the deployment of thermochemical recycling technologies can decouple the material system from fossil resource extraction. Furthermore, energy use is reduced if pyrolysis and/or gasification are included in the portfolio of recycling technologies. In a decarbonized energy system, deployment of co-recycling can lead to near-zero carbon emissions, while in more carbon-intensive energy systems the choice of thermochemical recycling route is key to limiting carbon emissions.
PDF https://doi.org/10.1016/j.jclepro.2022.132674

Similar Articles

ID Score Article
5711 Merchan, AL; Fischoeder, T; Hee, J; Lehnertz, MS; Osterthun, O; Pielsticker, S; Schleier, J; Tiso, T; Blank, LM; Klankermayer, J; Kneer, R; Quicker, P; Walther, G; Palkovits, R Chemical recycling of bioplastics: technical opportunities to preserve chemical functionality as path towards a circular economy(2022)Green Chemistry, 24, 24
13508 Bourtsalas, AC Energy recovery and GHG impact assessment of biomass, polymers, and coal(2023)
20531 Kumar, M; Bhujbal, SK; Kohli, K; Prajapati, R; Sharma, BK; Sawarkar, AD; Abhishek, K; Bolan, S; Ghosh, P; Kirkham, MB; Padhye, LP; Pandey, A; Vithanage, M; Bolan, N A review on value-addition to plastic waste towards achieving a circular economy(2024)
3919 Costa, LPD; de Miranda, DMV; de Oliveira, ACC; Falcon, L; Pimenta, MSS; Bessa, IG; Wouters, SJ; Andrade, MHS; Pinto, JC Capture and Reuse of Carbon Dioxide (CO2) for a Plastics Circular Economy: A Review(2021)Processes, 9, 5
17214 Bos, HL; van Es, DS; Harmsen, PFH On the intrinsic recycling potential of carbon-based materials and products; an assessment method and outlook(2024)
13111 Das, S; Liang, C; Dunn, JB Plastics to fuel or plastics: Life cycle assessment-based evaluation of different options for pyrolysis at end-of-life(2022)
17081 Schirmeister, CG; Mülhaupt, R Closing the Carbon Loop in the Circular Plastics Economy(2022)Macromolecular Rapid Communications, 43, 13
562 Yang, MY; Chen, L; Wang, JJ; Msigwa, G; Osman, AI; Fawzy, S; Rooney, DW; Yap, PS Circular economy strategies for combating climate change and other environmental issues(2023)Environmental Chemistry Letters, 21, 1
27350 Klotz, M; Oberschelp, C; Salah, C; Subal, L; Hellweg, S The role of chemical and solvent-based recycling within a sustainable circular economy for plastics(2024)
17052 Jeswani, H; Krüger, C; Russ, M; Horlacher, M; Antony, F; Hann, S; Azapagic, A Life cycle environmental impacts of chemical recycling via pyrolysis of mixed plastic waste in comparison with mechanical recycling and energy recovery(2021)
Scroll