Knowledge Agora



Similar Articles

Title Energy Analysis-Based Cyber Attack Detection by IoT with Artificial Intelligence in a Sustainable Smart City
ID_Doc 37610
Authors Prabakar, D; Sundarrajan, M; Manikandan, R; Jhanjhi, NZ; Masud, M; Alqhatani, A
Title Energy Analysis-Based Cyber Attack Detection by IoT with Artificial Intelligence in a Sustainable Smart City
Year 2023
Published Sustainability, 15.0, 7
Abstract Cybersecurity continues to be a major issue for all industries engaged in digital activity given the cyclical surge in security incidents. Since more Internet of Things (IoT) devices are being used in homes, offices, transportation, healthcare, and other venues, malicious attacks are happening more frequently. Since distance between IoT as well as fog devices is closer than distance between IoT devices as well as the cloud, attacks can be quickly detected by integrating fog computing into IoT. Due to the vast amount of data produced by IoT devices, ML is commonly employed for attack detection. This research proposes novel technique in cybersecurity-based network traffic analysis and malicious attack detection using IoT artificial intelligence techniques for a sustainable smart city. A traffic analysis has been carried out using a kernel quadratic vector discriminant machine which enhances the data transmission by reducing network traffic. This enhances energy efficiency with reduced traffic. Then, the malicious attack detection is carried out using adversarial Bayesian belief networks. The experimental analysis has been carried out in terms of throughput, data traffic analysis, end-end delay, packet delivery ratio, energy efficiency, and QoS. The proposed technique attained a throughput of 98%, data traffic analysis of 74%, end-end delay of 45%, packet delivery ratio of 92%, energy efficiency of 92%, and QoS of 79%.
PDF https://www.mdpi.com/2071-1050/15/7/6031/pdf?version=1681181209

Similar Articles

ID Score Article
37428 Velliangiri, S; Amma, NGB; Baik, NK Detection of DoS Attacks in Smart City Networks With Feature Distance Maps: A Statistical Approach(2023)Ieee Internet Of Things Journal, 10.0, 21
37333 Almasri, MM; Alajlan, AM A novel-cascaded ANFIS-based deep reinforcement learning for the detection of attack in cloud IoT-based smart city applications(2023)Concurrency And Computation-Practice & Experience, 35.0, 22
45810 Rashid, MM; Kamruzzaman, J; Hassan, MM; Imam, T; Gordon, S Cyberattacks Detection in IoT-Based Smart City Applications Using Machine Learning Techniques(2020)International Journal Of Environmental Research And Public Health, 17, 24
42094 Rangelov, D; Lämmel, P; Brunzel, L; Borgert, S; Darius, P; Tcholtchev, N; Boerger, M Towards an Integrated Methodology and Toolchain for Machine Learning-Based Intrusion Detection in Urban IoT Networks and Platforms(2023)Future Internet, 15, 3
42628 Ali, H; Elzeki, OM; Elmougy, S Smart Attacks Learning Machine Advisor System for Protecting Smart Cities from Smart Threats(2022)Applied Sciences-Basel, 12, 13
36781 Alrashdi, I; Alqazzaz, A; Aloufi, E; Alharthi, R; Zohdy, M; Ming, H AD-IoT: Anomaly Detection of IoT Cyberattacks in Smart City Using Machine Leaming(2019)
40378 Alshahrani, MM; Prati, A A Secure and Intelligent Software-Defined Networking Framework for Future Smart Cities to Prevent DDoS Attack(2023)Applied Sciences-Basel, 13, 17
37472 Shafiq, M; Tian, ZH; Sun, YB; Du, XJ; Guizani, M Selection of effective machine learning algorithm and Bot-IoT attacks traffic identification for internet of things in smart city(2020)
43707 Rathore, S; Kwon, BW; Park, JH BlockSecIoTNet: Blockchain-based decentralized security architecture for IoT network(2019)
Scroll