Knowledge Agora



Similar Articles

Title A Detailed Review on Enhancing the Security in Internet of Things-Based Smart City Environment Using Machine Learning Algorithms
ID_Doc 38565
Authors Muniswamy, A; Rathi, R
Title A Detailed Review on Enhancing the Security in Internet of Things-Based Smart City Environment Using Machine Learning Algorithms
Year 2024
Published
Abstract Over the past few years, smart cities have seamlessly integrated into our daily lives, offering convenience and simplicity. However, as these cities become increasingly interconnected and reliant on the Internet of Things (IoT), ensuring heightened security measures becomes paramount. The potential compromise of IoT devices due to vulnerabilities poses significant risks, including the theft of personal data, leading to severe hazards for individuals. Thus, Security plays a pivotal role in safeguarding IoT devices. In this modern era, integrating security measures with machine learning has emerged as a solution to automate and streamline security protocols. This requires a comprehensive analysis of enhancing security levels in IoT devices within innovative city environments. Our study extensively surveys security issues across various facets of IoT infrastructure, including hardware, cloud environments, applications, data, software, and networks. Through thorough examination, we identify the effects of these issues and propose countermeasures to bolster Security, mainly focusing on IoT devices. Furthermore, our study delves into various machine learning algorithms, providing examples, detailing attack types, and assessing accuracy rates for each algorithm. We offer a quick reference guide that outlines the benefits and drawbacks of different machine-learning algorithms and their applications. Additionally, we aim to identify and mitigate various security threats by exploring diverse datasets, evaluation metrics, IoT threats, and machine-learning techniques. By thoroughly exploring these aspects, our study equips future researchers with the knowledge to effectively identify potential security threats and implement robust safeguards against them.
PDF https://doi.org/10.1109/access.2024.3450180

Similar Articles

ID Score Article
45810 Rashid, MM; Kamruzzaman, J; Hassan, MM; Imam, T; Gordon, S Cyberattacks Detection in IoT-Based Smart City Applications Using Machine Learning Techniques(2020)International Journal Of Environmental Research And Public Health, 17, 24
42459 Chui, KT; Gupta, BB; Liu, JQ; Arya, V; Nedjah, N; Almomani, A; Chaurasia, P A Survey of Internet of Things and Cyber-Physical Systems: Standards, Algorithms, Applications, Security, Challenges, and Future Directions(2023)Information, 14, 7
42094 Rangelov, D; Lämmel, P; Brunzel, L; Borgert, S; Darius, P; Tcholtchev, N; Boerger, M Towards an Integrated Methodology and Toolchain for Machine Learning-Based Intrusion Detection in Urban IoT Networks and Platforms(2023)Future Internet, 15, 3
38272 Saba, T; Khan, AR; Sadad, T; Hong, SP Securing the IoT System of Smart City against Cyber Threats Using Deep Learning(2022)
41042 Priyadarshini, I Anomaly Detection of IoT Cyberattacks in Smart Cities Using Federated Learning and Split Learning(2024)Big Data And Cognitive Computing, 8, 3
37068 Aljamal, M; Mughaid, A; Al Shboul, B; Bani-Salameh, H; Alzubi, S; Abualigah, L Optimizing risk mitigation: A simulation-based model for detecting fake IoT clients in smart city environments(2024)
39259 Amaizu, GC; Lee, JM; Kim, DS Machine Learning Based Security for Smart Cities(2022)
36781 Alrashdi, I; Alqazzaz, A; Aloufi, E; Alharthi, R; Zohdy, M; Ming, H AD-IoT: Anomaly Detection of IoT Cyberattacks in Smart City Using Machine Leaming(2019)
36314 Rashid, MM; Kamruzzaman, J; Hassan, MM; Imam, T; Wibowo, S; Gordon, S; Fortino, G Adversarial training for deep learning-based cyberattack detection in IoT-based smart city applications(2022)
41197 Girubagari, N; Ravi, TN Methods of anomaly detection for the prevention and detection of cyber attacks(2023)International Journal Of Intelligent Engineering Informatics, 11, 4
Scroll