Knowledge Agora



Similar Articles

Title Abatement of hazardous materials and biomass waste via pyrolysis and co-pyrolysis for environmental sustainability and circular economy
ID_Doc 4002
Authors Chew, KW; Chia, SR; Chia, WY; Cheah, WY; Munawaroh, HSH; Ong, WJ
Title Abatement of hazardous materials and biomass waste via pyrolysis and co-pyrolysis for environmental sustainability and circular economy
Year 2021
Published
Abstract The remarkable journey of progression of mankind has created various impacts in the form of polluted environment, amassed heavy metals and depleting resources. This alarming situation demands sustainable energy resources and approaches to deal with these environmental hazards and power deficit. Pyrolysis and co-pyrolysis address both energy and environmental issues caused by civilization and industrialization. The processes use hazardous waste materials including waste tires, plastic and medical waste, and biomass waste such as livestock waste and agricultural waste as feedstock to produce gas, char and pyrolysis oil for energy production. Usage of hazardous materials as pyrolysis and co-pyrolysis feedstock reduces disposal of harmful substances into environment, reducing occurrence of soil and water pollution, and substituting the non-renewable feedstock, fossil fuels. As compared to combustion, pyrolysis and co-pyrolysis have less emission of air pollutants and act as alternative options to landfill disposal and incineration for hazardous materials and biomass waste. Hence, stabilizing heavy metals and solving the energy and waste management problems. This review discusses the pyrolysis and co pyrolysis of biomass and harmful wastes to strive towards circular economy and eco-friendly, cleaner energy with minimum waste disposal, reducing negative impact on the planet and creating future possibilities. (c) 2021 Elsevier Ltd. All rights reserved.
PDF

Similar Articles

ID Score Article
2834 Andooz, A; Eqbalpour, M; Kowsari, E; Ramakrishna, S; Cheshmeh, ZA A comprehensive review on pyrolysis from the circular economy point of view and its environmental and social effects(2023)
26791 Cuevas, AB; Leiva-Candia, DE; Dorado, MP An Overview of Pyrolysis as Waste Treatment to Produce Eco-Energy(2024)Energies, 17, 12
24647 Qureshi, MS; Oasmaa, A; Pihkola, H; Deviatkin, I; Tenhunen, A; Mannila, J; Minkkinen, H; Pohjakallio, M; Laine-Ylijoki, J Pyrolysis of plastic waste: Opportunities and challenges(2020)
29061 Biakhmetov, B; Dostiyarov, A; Ok, YS; You, SM A review on catalytic pyrolysis of municipal plastic waste(2023)Wiley Interdisciplinary Reviews-Energy And Environment, 12.0, 6
17672 Janáková, I; Cech, M; Grabovská, S; Sigut, O; Sala, P; Kijo-Kleczkowska, A Pyrolysis of Specific Non-Recyclable Waste Materials: Energy Recovery and Detailed Product Characteristics(2024)Materials, 17, 8
12555 Ferrari, V; Nazari, MT; da Silva, NF; Crestani, L; Raymundo, LM; Dotto, GL; Piccin, JS; Oliveira, LFS; Bernardes, AM Pyrolysis: a promising technology for agricultural waste conversion into value-added products(2024)
6817 Jung, JM; Cho, SH; Jung, S; Lin, KYA; Chen, WH; Tsang, YF; Kwon, EE Disposal of plastic mulching film through CO2-assisted catalytic pyrolysis as a strategic means for microplastic mitigation(2022)
13942 Goktepeli, G; Ozgan, A; Onen, V; Ahmetli, G; Kalem, M; Yel, E Development of sustainable resource recovery approach from agro-industrial wastes by revealing the economic added value potential(2024)International Journal Of Environmental Science And Technology, 21, 12
19620 Tan, KQ; Ahmad, MA; Da Oh, W; Low, SC Valorization of hazardous plastic wastes into value-added resources by catalytic pyrolysis-gasification: A review of techno-economic analysis(2023)
26507 Sanchez-Hervas, JM; Ortiz, I; Márquez, A; Fernández-Fernández, AM; Canivell, M; Ruiz, E Biomass and waste pyrolysis as a strategy for sustainable production and industrial symbiosis in the Community of Madrid (Spain)(2023)
Scroll