Title | A Novel Additively 4D Printed Origami-inspired Tunable Multi-layer Frequency Selective Surface for mm-Wave IoT, RFID, WSN, 5G, and Smart City Applications |
---|---|
ID_Doc | 40020 |
Authors | Cui, YP; Nauroze, SA; Bahr, R; Tentzeris, MM |
Title | A Novel Additively 4D Printed Origami-inspired Tunable Multi-layer Frequency Selective Surface for mm-Wave IoT, RFID, WSN, 5G, and Smart City Applications |
Year | 2021 |
Published | |
Abstract | This paper presents a novel 4D printed tunable frequency selective surface (FSS) utilizing a multi-layer mirror-stacked "Miura-ori" structure that can be applied in numerous mm-Wave, IoT, RFID, WSN, 5G, and smart city applications. The prototype was fabricated with fully additive hybrid (3D and inkjet) printing processes to realize a flexible two-layer substrate with conductive traces on both top and bottom. The proposed multi-layer/multi-material manufacturing process features very significant strength improvement over paper-based origami structures, while enabling the realization of increasingly complex "morphing" designs that would be otherwise difficult to fabricate using traditional paper-based substrates. The proof-of-concept prototype demonstrates great frequency tunability, angle of incidence (AoI) rejection, and significantly improved insertion loss performance over simpler single-layer Miura-based designs as well as an operability up to much higher mm-wave frequencies up to at least 28GHz |
No similar articles found.