Knowledge Agora



Similar Articles

Title Can Pyrolysis Oil Be Used as a Feedstock to Close the Gap in the Circular Economy of Polyolefins?
ID_Doc 4067
Authors Erkmen, B; Ozdogan, A; Ezdesir, A; Celik, G
Title Can Pyrolysis Oil Be Used as a Feedstock to Close the Gap in the Circular Economy of Polyolefins?
Year 2023
Published Polymers, 15, 4
Abstract Plastics are engineering marvels that have found widespread use in all aspects of modern life. However, poor waste management practices and inefficient recycling technologies, along with their extremely high durability, have caused one of the major environmental problems facing humankind: waste plastic pollution. The upcycling of waste plastics to chemical feedstock to produce virgin plastics has emerged as a viable option to mitigate the adverse effects of plastic pollution and close the gap in the circular economy of plastics. Pyrolysis is considered a chemical recycling technology to upcycle waste plastics. Yet, whether pyrolysis as a stand-alone technology can achieve true circularity or not requires further investigation. In this study, we analyzed and critically evaluated whether oil obtained from the non-catalytic pyrolysis of virgin polypropylene (PP) can be used as a feedstock for naphtha crackers to produce olefins, and subsequently polyolefins, without undermining the circular economy and resource efficiency. Two different pyrolysis oils were obtained from a pyrolysis plant and compared with light and heavy naphtha by a combination of physical and chromatographic methods, in accordance with established standards. The results demonstrate that pyrolysis oil consists of mostly cyclic olefins with a bromine number of 85 to 304, whereas light naphtha consists of mostly paraffinic hydrocarbons with a very low olefinic content and a bromine number around 1. Owing to the compositional differences, pyrolysis oil studied herein is completely different than naphtha in terms of hydrocarbon composition and cannot be used as a feedstock for commercial naphtha crackers to produce olefins. The findings are of particular importance to evaluating different chemical recycling opportunities with respect to true circularity and may serve as a benchmark to determine whether liquids obtained from different polyolefin recycling technologies are compatible with existing industrial steam crackers' feedstock.
PDF

Similar Articles

ID Score Article
24647 Qureshi, MS; Oasmaa, A; Pihkola, H; Deviatkin, I; Tenhunen, A; Mannila, J; Minkkinen, H; Pohjakallio, M; Laine-Ylijoki, J Pyrolysis of plastic waste: Opportunities and challenges(2020)
22570 Dunkle, MN; Pijcke, P; Winniford, WL; Ruitenbeek, M; Bellos, G Method development and evaluation of pyrolysis oils from mixed waste plastic by GC-VUV(2021)
13476 Chang, SH Plastic waste as pyrolysis feedstock for plastic oil production: A review(2023)
5931 Dai, LL; Zhou, N; Lv, YC; Cheng, YL; Wang, YP; Liu, YH; Cobb, K; Chen, PL; Lei, HW; Ruan, RG Pyrolysis technology for plastic waste recycling: A state-of-the-art review(2022)
23649 Laghezza, M; Fiore, S; Berruti, F A review on the pyrolytic conversion of plastic waste into fuels and chemicals(2024)
10292 Soni, VK; Singh, G; Vijayan, BK; Chopra, A; Kapur, GS; Ramakumar, SSV Thermochemical Recycling of Waste Plastics by Pyrolysis: A Review(2021)Energy & Fuels, 35, 16
15035 Kusenberg, M; Faussone, GC; Thi, HD; Roosen, M; Grilc, M; Eschenbacher, A; De Meester, S; Van Geem, KM Maximizing olefin production via steam cracking of distilled pyrolysis oils from difficult-to-recycle municipal plastic waste and marine litter(2022)
22395 Chasioti, A; Zabaniotou, A An Industrial Perspective for Sustainable Polypropylene Plastic Waste Management via Catalytic Pyrolysis-A Technical Report(2024)Sustainability, 16.0, 14
10899 Van Waeyenberg, J; Vikanova, K; Smeyers, B; Van Vaerenbergh, T; Aerts, M; Zhang, ZL; Sivanandan, S; Van Leuven, H; Wu, XJ; Sels, B High Molecular Weight Product Formation in Polyolefin Chemical Recycling: A Comprehensive Review on Primary and Secondary Products(2024)Acs Sustainable Chemistry & Engineering, 12, 30
17200 Gracida-Alvarez, UR; Benavides, PT; Lee, US; Wang, MC Life-cycle analysis of recycling of post-use plastic to plastic via pyrolysis(2023)
Scroll