Knowledge Agora



Similar Articles

Title FFireNet: Deep Learning Based Forest Fire Classification and Detection in Smart Cities
ID_Doc 41582
Authors Khan, S; Khan, A
Title FFireNet: Deep Learning Based Forest Fire Classification and Detection in Smart Cities
Year 2022
Published Symmetry-Basel, 14, 10
Abstract Forests are a vital natural resource that directly influences the ecosystem. Recently, forest fire has been a serious issue due to natural and man-made climate effects. For early forest fire detection, an artificial intelligence-based forest fire detection method in smart city application is presented to avoid major disasters. This research presents a review of the vision-based forest fire localization and classification methods. Furthermore, this work makes use of the forest fire detection dataset, which solves the classification problem of discriminating fire and no-fire images. This work proposes a deep learning method named FFireNet, by leveraging the pre-trained convolutional base of the MobileNetV2 model and adding fully connected layers to solve the new task, that is, the forest fire recognition problem, which helps in classifying images as forest fires based on extracted features which are symmetrical. The performance of the proposed solution for classifying fire and no-fire was evaluated using different performance metrics and compared with other CNN models. The results show that the proposed approach achieves 98.42% accuracy, 1.58% error rate, 99.47% recall, and 97.42% precision in classifying the fire and no-fire images. The outcomes of the proposed approach are promising for the forest fire classification problem considering the unique forest fire detection dataset.
PDF https://www.mdpi.com/2073-8994/14/10/2155/pdf?version=1666688595

Similar Articles

ID Score Article
38217 Avazov, K; Mukhiddinov, M; Makhmudov, F; Cho, YI Fire Detection Method in Smart City Environments Using a Deep-Learning-Based Approach(2022)Electronics, 11, 1
44667 Nadeem, M; Dilshad, N; Alghamdi, NS; Dang, LM; Song, HK; Nam, J; Moon, H Visual Intelligence in Smart Cities: A Lightweight Deep Learning Model for Fire Detection in an IoT Environment(2023)Smart Cities, 6, 5
40645 Dalal, S; Lilhore, UK; Radulescu, M; Simaiya, S; Jaglan, V; Sharma, A A hybrid LBP-CNN with YOLO-v5-based fire and smoke detection model in various environmental conditions for environmental sustainability in smart city(2024)
40987 Talaat, FM; ZainEldin, H An improved fire detection approach based on YOLO-v8 for smart cities(2023)
40778 Saydirasulovich, SN; Abdusalomov, A; Jamil, MK; Nasimov, R; Kozhamzharova, D; Cho, YI A YOLOv6-Based Improved Fire Detection Approach for Smart City Environments(2023)Sensors, 23, 6
Scroll