Knowledge Agora



Similar Articles

Title M-IDM: A Multi-Classification Based Intrusion Detection Model in Healthcare IoT
ID_Doc 41671
Authors Lee, JD; Cha, HS; Rathore, S; Park, JH
Title M-IDM: A Multi-Classification Based Intrusion Detection Model in Healthcare IoT
Year 2021
Published Cmc-Computers Materials & Continua, 67, 2
Abstract In recent years, the application of a smart city in the healthcare sector via loT systems has continued to grow exponentially and various advanced network intrusions have emerged since these loT devices are being connected. Previous studies focused on security threat detection and blocking technologies that rely on testbed data obtained from a single medical IoT device or simulation using a well-known dataset, such as the NSL-KDD dataset. However, such approaches do not reflect the features that exist in real medical scenarios, leading to failure in potential threat detection. To address this problem, we proposed a novel intrusion classification architecture known as a Multi-class Classification based Intrusion Detection Model (M-IDM), which typically relies on data collected by real devices and the use of convolutional neural networks (i.e., it exhibits better performance compared with conventional machine learning algorithms, such as naive Bayes, support vector machine (SVM)). Unlike existing studies, the proposed architecture employs the actual healthcare IoT environment of National Cancer Center in South Korea and actual network data from real medical devices, such as a patient's monitors (i.e., electrocardiogram and thermometers). The proposed architecture classifies the data into multiple classes: Critical, informal, major, and minor, for intrusion detection. Further, we experimentally evaluated and compared its performance with those of other conventional machine learning algorithms, including naive Bayes, SVM, and logistic regression, using neural networks.
PDF https://doi.org/10.32604/cmc.2021.014774

Similar Articles

ID Score Article
45612 Saba, T Intrusion Detection in Smart City Hospitals using Ensemble Classifiers(2020)
40417 Zubair, M; Ghubaish, A; Unal, D; Al-Ali, A; Reimann, T; Alinier, G; Hammoudeh, M; Qadir, J Secure Bluetooth Communication in Smart Healthcare Systems: A Novel Community Dataset and Intrusion Detection System(2022)Sensors, 22, 21
41938 Zou, X; Cao, JH; Guo, Q; Wen, T A novel network security algorithm based on improved support vector machine from smart city perspective(2018)
41832 Gupta, SK; Tripathi, M; Grover, J Hybrid optimization and deep learning based intrusion detection system(2022)
Scroll