Knowledge Agora



Similar Articles

Title Social Network Based Crowd Sensing for Intelligent Transportation and Climate Applications
ID_Doc 41700
Authors Tse, R; Zhang, LF; Lei, P; Pau, G
Title Social Network Based Crowd Sensing for Intelligent Transportation and Climate Applications
Year 2018
Published Mobile Networks & Applications, 23, 1
Abstract In recent years, the growing prevalence of social networks makes it possible to utilize human users as sensors to inspect city environment and human activities. Consequently, valuable insights can be gained by applying data mining techniques to the data generated through social networks. In this work, a practical approach to combine data mining techniques with statistical analysis is proposed to implement crowd sensing in a smart city. A case study to analyze the relationship between weather conditions and traffic congestion in Beijing based on tweets posted on Sina Weibo platform is presented to demonstrate the proposed approach. Following the steps of data pre-processing and topic determination, we applied Granger Causality Test to study the causal relationships between weather conditions, traffic congestion and human outdoor activity. The mediation analysis is also implemented to verify human outdoor activity as a mediator variable significantly carrying the influence of good weather to traffic congestion. The result demonstrates that outdoor activity serves as a mediator transmitting the effect of good weather on traffic congestion. In addition, the causes of negative emotion are also studied.
PDF

Similar Articles

ID Score Article
41744 Tse, R; Zhang, LF; Lei, P; Pau, G Crowd Sensing of Weather Conditions and Traffic Congestion Based on Data Mining in Social Networks(2017)
Scroll