Knowledge Agora



Similar Articles

Title Edge Perception Temporal Data Anomaly Detection Method Based on BiLSTM-Attention in Smart City Big Data Environment
ID_Doc 42294
Authors Xia, B; Zhou, J; Kong, FY; Yang, JR; Lin, L; Wu, X; Xie, Q
Title Edge Perception Temporal Data Anomaly Detection Method Based on BiLSTM-Attention in Smart City Big Data Environment
Year 2024
Published Journal Of Circuits Systems And Computers, 33, 12
Abstract The improvement of edge perception layer anomaly detection performance has an immeasurable driving effect on the development of smart cities. However, many existing anomaly detection methods often suffer from problems such as ignoring the correlation between multiple source temporal sequences and losing key features of a single temporal sequence. Therefore, a new anomaly detection method using BiLSTM and attention mechanism is proposed. First, a fusion algorithm TCDCD was formed by combining Data Correlation Detection (DCD) and Temporal Continuity Detection (TCD) to preprocess Edge Perception Data (EPD). Then, BiLSTM is employed to gather deep-level features of EPD, and the attention mechanism is utilized to enhance important features that contribute to anomaly detection. Ultimately, the SoftMax classifier is employed to categorize abnormal data. The experimental findings from the SWaT and WADI datasets demonstrate that the suggested method achieves better performance than other newer anomaly detection methods. Among them, the accuracy, precision, recall and F1 of the proposed method on the SWaT dataset were 96.62%, 94.32%, 96.02% and 94.30%, respectively. In terms of performance, it is superior to traditional EPD anomaly detection models, and has good representational and generalization capabilities.
PDF

Similar Articles

ID Score Article
35921 Ragab, M; Sabir, MFS Arithmetic Optimization with Deep Learning Enabled Anomaly Detection in Smart City(2022)Cmc-Computers Materials & Continua, 73, 1
Scroll