Knowledge Agora



Similar Articles

Title Immobilizing white-rot fungi laccase: Toward bio-derived supports as a circular economy approach in organochlorine removal
ID_Doc 4342
Authors Serbent, MP; Magario, I; Saux, C
Title Immobilizing white-rot fungi laccase: Toward bio-derived supports as a circular economy approach in organochlorine removal
Year 2024
Published Biotechnology And Bioengineering, 121, 2
Abstract Despite their high persistence in the environment, organochlorines (OC) are widely used in the pharmaceutical industry, in plastics, and in the manufacture of pesticides, among other applications. These compounds and the byproducts of their decomposition deserve attention and efficient proposals for their treatment. Among sustainable alternatives, the use of ligninolytic enzymes (LEs) from fungi stands out, as these molecules can catalyze the transformation of a wide range of pollutants. Among LEs, laccases (Lac) are known for their efficiency as biocatalysts in the conversion of organic pollutants. Their application in biotechnological processes is possible, but the enzymes are often unstable and difficult to recover after use, driving up costs. Immobilization of enzymes on a matrix (support or solid carrier) allows recovery and stabilization of this catalytic capacity. Agricultural residual biomass is a passive environmental asset. Although underestimated and still treated as an undesirable component, residual biomass can be used as a low-cost adsorbent and as a support for the immobilization of enzymes. In this review, the adsorption capacity and immobilization of fungal Lac on supports made from residual biomass, including compounds such as biochar, for the removal of OC compounds are analyzed and compared with the use of synthetic supports. A qualitative and quantitative comparison of the reported results was made. In this context, the use of peanut shells is highlighted in view of the increasing peanut production worldwide. The linkage of methods with circular economy approaches that can be applied in practice is discussed.
PDF

Similar Articles

ID Score Article
8299 Zerva, A; Pentari, C; Topakas, E Crosslinked Enzyme Aggregates (CLEAs) of Laccases from Pleurotus citrinopileatus Induced in Olive Oil Mill Wastewater (OOMW)(2020)Molecules, 25.0, 9
13737 Mayolo-Deloisa, K; González-González, M; Rito-Palomares, M Laccases in Food Industry: Bioprocessing, Potential Industrial and Biotechnological Applications(2020)
29866 Girelli, AM; Chiappini, V Renewable, sustainable, and natural lignocellulosic carriers for lipase immobilization: A review(2023)
10532 Ghose, A; Mitra, S Spent waste from edible mushrooms offers innovative strategies for the remediation of persistent organic micropollutants: A review(2022)
29073 Budzaki, S; Velic, N; Ostojcic, M; Stjepanovic, M; Rajs, BB; Seres, Z; Maravic, N; Stanojev, J; Hessel, V; Strelec, I Waste Management in the Agri-Food Industry: The Conversion of Eggshells, Spent Coffee Grounds, and Brown Onion Skins into Carriers for Lipase Immobilization(2022)Foods, 11.0, 3
12802 Caroca, E; Elorrieta, M; Palma, C; Navia, D; Lebrero, R; Carvajal, A Lignocellulosic residue valorization in a sequential process of solid-state fermentation and solid substrate anaerobic digestion(2022)Journal Of Chemical Technology And Biotechnology, 97.0, 6
7156 Rodríguez-Couto, S Industrial and environmental applications of white-rot fungi(2017)Mycosphere, 8, 3
27907 Arias, A; Feijoo, G; Moreira, MT Process modelling and environmental assessment on the valorization of lignocellulosic waste to antimicrobials(2023)
10059 Sun, K; Li, SY; Si, YB; Huang, QG Advances in laccase-triggered anabolism for biotechnology applications(2021)Critical Reviews In Biotechnology, 41.0, 7
19904 Rodríguez-Escribano, D; Pliego-Magán, R; de Salas, F; Aza, P; Gentili, P; Ihalainen, P; Levée, T; Meyer, V; Petit-Conil, M; Tapin-Lingua, S; Lecourt, M; Camarero, S Tailor-made alkaliphilic and thermostable fungal laccases for industrial wood processing(2022)Biotechnology For Biofuels And Bioproducts, 15.0, 1
Scroll