Knowledge Agora



Similar Articles

Title The concept of circular economy strategy in food waste management for the optimization of energy production through anaerobic digestion
ID_Doc 4826
Authors Loizia, P; Neofytou, N; Zorpas, AA
Title The concept of circular economy strategy in food waste management for the optimization of energy production through anaerobic digestion
Year 2019
Published Environmental Science And Pollution Research, 26, 15
Abstract Food waste management (FWM) is considered to be an extremely important social issue besides an environmental one. Worldwide, it is estimated that 1.3 billion t/year of foods are disposed of in landfills (including edible and inedible foods). Moreover, FAO indicated that if food waste (FW) was a country, it could be the 3rd biggest CO2 producer after China and the USA with more than 3.5-4.2 billion of t equivalence CO2. Each citizen in the entire EU produces approximately 179kg/year FW equal more or less with 600 Euro/year. This paper focuses on the concept of circular economy (CE) and how can we optimize and improve the production of biogas from UASB-R (upflow anaerobic sludge blanket reactor) using FW and natural minerals (clinoptilolite). The study was elaborated through laboratory scale experiments using different mixtures of FW, liquid waste from slaughterhouse (LWS), and natural clinoptilolite (Cli). The amount of biogas produced and the methane content of biogas were used as indicators in order to monitor and asses the performance of the anaerobic digester. The results of the present study were encouraging towards the use of FW in existing anaerobic treatment plants, suggesting selective collection at source of FW, diversion from landfills, and use as a secondary resource for energy recovery through a transition to a CE. The results indicate that the use of FW with zeolite duplicates the production of CH4 within the same days of production compared with the control sample.
PDF

Similar Articles

ID Score Article
3603 Dhungana, B; Lohani, SP; Marsolek, M Anaerobic Co-Digestion of Food Waste with Livestock Manure at Ambient Temperature: A Biogas Based Circular Economy and Sustainable Development Goals(2022)Sustainability, 14, 6
5014 Rekleitis, G; Haralambous, KJ; Loizidou, M; Aravossis, K Utilization of Agricultural and Livestock Waste in Anaerobic Digestion (A.D): Applying the Biorefinery Concept in a Circular Economy(2020)Energies, 13, 17
8593 Cecchi, F; Cavinato, C Smart Approaches to Food Waste Final Disposal(2019)International Journal Of Environmental Research And Public Health, 16.0, 16
10455 Sevillano, CA; Pesantes, AA; Carpio, EP; Martínez, EJ; Gómez, X Anaerobic Digestion for Producing Renewable Energy-The Evolution of This Technology in a New Uncertain Scenario(2021)Entropy, 23, 2
9304 Dhull, P; Lohchab, RK; Kumar, S; Kumari, M; Shaloo; Bhankhar, AK Anaerobic Digestion: Advance Techniques for Enhanced Biomethane/Biogas Production as a Source of Renewable Energy(2024)Bioenergy Research, 17.0, 2
28913 Slorach, PC; Jeswani, HK; Cuéllar-Franca, R; Azapagic, A Environmental and economic implications of recovering resources from food waste in a circular economy(2019)
25868 Ragazzi, M; Maniscalco, M; Torretta, V; Ferronato, N; Rada, EC Anaerobic digestion as sustainable source of energy: A dynamic approach for improving the recovery of organic waste(2017)
22196 Slorach, PC; Jeswani, HK; Cuéllar-Franca, R; Azapagic, A Environmental sustainability of anaerobic digestion of household food waste(2019)
16653 Ingrao, C; Faccilongo, N; Di Gioia, L; Messineo, A Food waste recovery into energy in a circular economy perspective: A comprehensive review of aspects related to plant operation and environmental assessment(2018)
21974 Slorach, PC; Jeswani, HK; Cuéllar-Franca, R; Azapagic, A Energy demand and carbon footprint of treating household food waste compared to its prevention(2019)
Scroll