Knowledge Agora



Similar Articles

Title Sintered Bottom and Vitrified Silica Ashes Derived from Incinerated Municipal Solid Waste as Circular Economy-Friendly Partial Replacements for Cement in Mortars
ID_Doc 5061
Authors Wijesekara, DA; Sargent, P; Hughes, DJ; Ennis, CJ
Title Sintered Bottom and Vitrified Silica Ashes Derived from Incinerated Municipal Solid Waste as Circular Economy-Friendly Partial Replacements for Cement in Mortars
Year 2024
Published Waste And Biomass Valorization, 15, 5
Abstract Sintered bottom ash (SBA) and vitrified ash (VA) derived from the incineration of municipal solid waste (MSW) at 1200 degrees C were used in this study as replacements for Type 2 Portland cement (CEM-II) based mortars. This approach negates the need to send them to landfill, benefits the circular economy and contributes towards the decarbonisation of cementitious construction materials in response to international net zero carbon emission agendas. The material (physico-chemical) characteristics of VA and SBA were analysed before being used as partial replacements for CEM-II in mortars, whereby compressive strength (CS) was the primary criterion for assessing engineering performance. VA and SBA replaced CEM-II at dosages of 10%, 25% and 50% based on their high inorganic and pozzolanic contents; whereby the 10% and 25% replacements did not compromise mortar strength. The alkalinity and pozzolanic properties of SBA collectively indicated it has greater potential as a cementitious material over VA, which possessed a neutral pH. The 28-day CS recorded for mixtures containing 25% VA and 10% SBA were 13.74 MPa and 11.77 MPa, respectively compared with 17.06 MPa for CEM-II control samples. The use of 2% additional water in 25% SBA mortar designs improved strength further, indicating that SBA's water retention properties permitted further hydration and strength development with curing. Microstructural, mineralogical and infrared spectroscopy analyses indicated that these strengths were owed to the formation of silicate-based hydration products. The outcomes from this study highlight that SBA has potential for replacing CEM-II and VA as a filler in cementitious mortar.
PDF https://link.springer.com/content/pdf/10.1007/s12649-023-02347-6.pdf

Similar Articles

ID Score Article
25609 Sharifikolouei, E; Canonico, F; Salvo, M; Baino, F; Ferraris, M Vitrified and nonvitrified municipal solid wastes as ordinary Portland cement (OPC) and sand substitution in mortars(2020)International Journal Of Applied Ceramic Technology, 17, 2
14086 Sargent, P; Sandanayake, M; Law, DW; Hughes, DJ; Shifa, F; Borthwick, B; Scott, P Strength, mineralogical, microstructural and CO2 emission assessment of waste mortars comprising excavated soil, scallop shells and blast furnace slag(2024)
21949 Vilarinho, IS; Guimaraes, G; Labrincha, JA; Seabra, MP Development of Eco-Mortars with the Incorporation of Municipal Solid Wastes Incineration Ash(2023)Materials, 16.0, 21
29318 Menéndez, E; Argiz, C; Recino, H; Sanjuán, MA Characterization of Mortars Made with Coal Ashes Identified as a Way Forward to Mitigate Climate Change(2022)Crystals, 12.0, 4
14371 Nasir, M; Adesina, A; Bahraq, AA; Aziz, MA; Mahmood, AH; Ibrahim, M; Yusuf, MO Strength, Microstructure, and Life Cycle Assessment of Silicomanganese Fume, Silica Fume, and Portland Cement Composites Designed Using Taguchi Method(2024)Journal Of Materials In Civil Engineering, 36, 7
19007 Li, YL; Yuan, Q; Li, JB Calcined Cutter Soil Mixing Residue-Based Alkali-Activated Cement: Compressive Strengths, Reaction Products, and Sustainability(2022)Acs Sustainable Chemistry & Engineering, 10.0, 1
13108 Jhatial, AA; Nováková, I; Gjerlow, E A Review on Emerging Cementitious Materials, Reactivity Evaluation and Treatment Methods(2023)Buildings, 13.0, 2
15007 Dwivedi, A; Bollam, R; Gupta, S Enhancement of engineering properties of cement mortars with masonry construction and demolition fines via carbon dioxide utilization, storage and chemical treatment(2024)
23188 Poranek, N; Pizon, J; Lazniewska-Piekarczyk, B; Czajkowski, A; Lagashkin, R Recycle Option for Municipal Solid Waste Incineration Fly Ash (MSWIFA) as a Partial Replacement for Cement in Mortars Containing Calcium Sulfoaluminate Cement (CSA) and Portland Cement to Save the Environment and Natural Resources(2024)Materials, 17, 1
14307 Sharma, S; Vyas, AK Evaluation of mechanical properties of cement mortars containing pond ash as partial replacement of river sand and prediction of properties by regression models(2024)European Journal Of Environmental And Civil Engineering, 28, 11
Scroll