Knowledge Agora



Similar Articles

Title One More Step towards a Circular Economy for Thermal Insulation Materials-Development of Composites Highly Filled with Waste Polyurethane (PU) Foam for Potential Use in the Building Industry
ID_Doc 5441
Authors Kowalczyk, L; Korol, J; Chmielnicki, B; Laska, A; Chuchala, D; Hejna, A
Title One More Step towards a Circular Economy for Thermal Insulation Materials-Development of Composites Highly Filled with Waste Polyurethane (PU) Foam for Potential Use in the Building Industry
Year 2023
Published Materials, 16, 2
Abstract The rapid development of the building sector has created increased demand for novel materials and technologies, while on the other hand resulting in the generation of a severe amount of waste materials. Among these are polyurethane (PU) foams, which are commonly applied as thermal insulation materials. Their management is a serious industrial problem, due to, for example, their complex chemical composition. Although some chemical and thermochemical methods of PU foam recycling are known, their broader use is limited due to requirements related to the complexity and safety of their installation, thus implicating high costs. Therefore, material recycling poses a promising alternative. The incorporation of waste PU foams as fillers for polymer composites could make it possible to take advantage of their structure and performance. Herein, polypropylene-based composites that were highly filled with waste PU foam and modified using foaming agents were prepared and analyzed. Depending on the foam loading and the foaming agent applied, the apparent density of material was reduced by as much as 68%. The efficient development of a porous structure, confirmed by scanning electron microscopy and high-resolution computed micro-tomography, enabled a 64% decrease in the thermal conductivity coefficient. The foaming of the structure affected the mechanical performance of composites, resulting in a deterioration of their tensile and compressive performance. Therefore, developing samples of the analyzed composites with the desired performance would require identifying the proper balance between mechanical strength and economic, as well as ecological (share of waste material in composite, apparent density of material), considerations.
PDF https://www.mdpi.com/1996-1944/16/2/782/pdf?version=1673935504

Similar Articles

ID Score Article
24945 Zakrzewska, P; Zygmunt-Kowalska, B; Kuznia, M; Glowacz-Czerwonka, D; Oleksy, M; Sieradzka, M Eco-Friendly Polyurethane Foams Enriched with Waste from the Food and Energy Industries(2024)Energies, 17, 15
27318 Barczewski, M; Kuranska, M; Salasinska, K; Michalowski, S; Prociak, A; Uram, K; Lewandowski, K Rigid polyurethane foams modified with thermoset polyester-glass fiber composite waste(2020)
16832 Kuranska, M; Leszczynska, M; Malewska, E; Prociak, A; Ryszkowska, J Implementation of Circular Economy Principles in the Synthesis of Polyurethane Foams(2020)Polymers, 12, 9
29912 Horvat, B; Knez, N; Hribar, U; König, J; Music, B Thermal insulation and flammability of composite waste polyurethane foam encapsulated in geopolymer for sustainable building envelope(2024)
21991 Biyada, S; Merzouki, M; Urbonavicius, J New Resources for Sustainable Thermal Insulation Using Textile and Agricultural Waste in a New Circular Economy Approach: An Overview(2023)Processes, 11.0, 9
27902 Kuznia, M; Zygmunt-Kowalska, B; Szajding, A; Magiera, A; Stanik, R; Gude, M Comparative Study on Selected Properties of Modified Polyurethane Foam with Fly Ash(2022)International Journal Of Molecular Sciences, 23.0, 17
26043 Gama, N; Godinho, B; Barros-Timmons, A; Ferreira, A PU composites based on different types of textile fibers(2021)Journal Of Composite Materials, 55, 24
24854 Kuranska, M; Barczewski, M; Uram, K; Lewandowski, K; Prociak, A; Michalowski, S Basalt waste management in the production of highly effective porous polyurethane composites for thermal insulating applications(2019)
23887 Amundarain, I; Miguel-Fernández, R; Asueta, A; García-Fernández, S; Arnaiz, S Synthesis of Rigid Polyurethane Foams Incorporating Polyols from Chemical Recycling of Post-Industrial Waste Polyurethane Foams(2022)Polymers, 14, 6
25885 Kairyte, A; Kremensas, A; Balciunas, G; Czlonka, S; Strakowska, A Closed Cell Rigid Polyurethane Foams Based on Low Functionality Polyols: Research of Dimensional Stability and Standardised Performance Properties(2020)Materials, 13, 6
Scroll