Knowledge Agora



Similar Articles

Title Advances in technological control of greenhouse gas emissions from wastewater in the context of circular economy
ID_Doc 5532
Authors Pahunang, RR; Buonerba, A; Senatore, V; Oliva, G; Ouda, M; Zarra, T; Muñoz, R; Puig, S; Ballesteros, FC; Li, CW; Hasan, SW; Belgiorno, V; Naddeo, V
Title Advances in technological control of greenhouse gas emissions from wastewater in the context of circular economy
Year 2021
Published
Abstract This review paper aims to identify the main sources of carbon dioxide (CO2) emissions from wastewater treatment plants (WWTPs) and highlights the technologies developed for CO2 capture in this milieu. CO2 is emitted in all the operational units of conventional WWTPs and even after the disposal of treated effluents and sludges. CO2 emissions from wastewater can be captured or mitigated by several technologies such as the production of biochar from sludge, the application of constructed wetlands (CWs), the treatment of wastewater in microbial electrochemical processes (microbial electrosynthesis, MES; microbial electrolytic carbon capture, MECC; in microbial carbon capture, MCC), and via microalgal cultivation. Sludge-to-biochar and CW systems showed a high cost-effectiveness in the capture of CO2, while MES, MECC, MCC technologies, and microalgal cultivation offered efficient capture of CO2 with associate production of value-added by-products. At the state-of-the-art, these technologies, utilized for carbon capture and utilization from wastewater, require more research for further configuration, development and cost-effectiveness. Moreover, the integration of these technologies has a potential internal rate of return (IRR) that could equate the operation or provide additional revenue to wastewater management. In the context of circular economy, these carbon capture technologies will pave theway for new sustainable concepts of WWTPs, as an essential element for the mitigation of climate change fostering the transition to a decarbonised economy. (C) 2021 Elsevier B.V. All rights reserved.
PDF

Similar Articles

ID Score Article
28517 Ghimire, U; Sarpong, G; Gude, VG Transitioning Wastewater Treatment Plants toward Circular Economy and Energy Sustainability(2021)Acs Omega, 6.0, 18
5335 Deng, SH; Wang, CQ; Ngo, HH; Guo, WS; You, N; Tang, H; Yu, HB; Tang, L; Han, J Comparative review on microbial electrochemical technologies for resource recovery from wastewater towards circular economy and carbon neutrality(2023)
6783 Batlle-Vilanova, P; Rovira-Alsina, L; Puig, S; Balaguer, MD; Icaran, P; Monsalvo, VM; Rogalla, F; Colprim, J Biogas upgrading, CO2 valorisation and economic revaluation of bioelectrochemical systems through anodic chlorine production in the framework of wastewater treatment plants(2019)
7241 Roy, M; Aryal, N; Zhang, YF; Patil, SA; Pant, D Technological progress and readiness level of microbial electrosynthesis and electrofermentation for carbon dioxide and organic wastes valorization(2022)
1519 Rusmanis, D; Yang, Y; Long, AIF; Gray, N; Martins, KC; Loideain, SOO; Lin, RC; Kang, XH; Cusack, DO; Carton, JG; Monaghan, R; Murphy, JD; Wall, DM Electrofuels in a circular economy: A systems approach towards net zero(2023)
510 Kalemba, K Circular Economy In Wastewater Treatment Plant(2020)Architecture Civil Engineering Environment, 13, 4
3452 Cao, TND; Mukhtar, H; Yu, CP; Bui, XT; Pan, SY Agricultural waste-derived biochar in microbial fuel cells towards a carbon-negative circular economy(2022)
6046 Kundu, D; Dutta, D; Samanta, P; Dey, S; Sherpa, KC; Kumar, S; Dubey, BK Valorization of wastewater: A paradigm shift towards circular bioeconomy and sustainability(2022)
21902 Sravan, JS; Matsakas, L; Sarkar, O Advances in Biological Wastewater Treatment Processes: Focus on Low-Carbon Energy and Resource Recovery in Biorefinery Context(2024)Bioengineering-Basel, 11.0, 3
3501 Vaz, SA; Badenes, SM; Pinheiro, HM; Martins, RC Recent reports on domestic wastewater treatment using microalgae cultivation: Towards a circular economy(2023)
Scroll