Knowledge Agora



Similar Articles

Title Towards food circular economy: hydrothermal treatment of mixed vegetable and fruit wastes to obtain fermentable sugars and bioactive compounds
ID_Doc 5845
Authors Sánchez, M; Laca, A; Laca, A; Díaz, M
Title Towards food circular economy: hydrothermal treatment of mixed vegetable and fruit wastes to obtain fermentable sugars and bioactive compounds
Year 2023
Published Environmental Science And Pollution Research, 30, 2
Abstract Due to processing activity, fruits and vegetables generate notable amounts of wastes at the processing, retail, and consumption level. Following the European goals for reducing food wastes and achieving a circular economy of resources, these biowastes should be valorized. In this work, hydrothermal hydrolysis at different conditions (temperatures, times, waste/water ratio, pH values) were tested to treat for first time; biowastes composed of mixed overripe fruits or vegetables to maximize the extraction of fermentable sugars that can be used as substrates in bioprocesses. Experimental data were fitted by a model based on irreversible first-order reactions, and kinetic constants were obtained. When hydrolysis of fruit wastes was carried out at 135 degrees C and pH 5 during 40 min, more than 40 g of reducing sugars per 100 g of waste (dry weight) could be obtained (represents an extraction of 97% of total carbohydrates). Concentrations of inhibitor compounds (HMF, furfural, acetic acid) in the hydrolysates were very low and, as example, a fermentation to obtain bioethanol was successfully carried out with an efficiency above 95%. Additionally, the production by hydrothermal treatment of bioactive compounds was investigated and the best results obtained were 92% DPPH inhibition and 12 mg GAE/g (dry weight) for antioxidant activity and phenolic compounds, respectively. These values are similar or even higher than those reported in literature using specific parts of fruits and vegetables.
PDF

Similar Articles

ID Score Article
13163 Chua, GK; Tan, FHY; Chew, FN; Mohd-Hairul, AR; Ahmad, MAA Food waste hydrolysate as fermentation medium: Comparison of pre-treatment methods(2021)
23315 Fagundes, VD; Freitag, JF; Simon, V; Colla, LM Enzymatic hydrolysis of food waste for bioethanol production(2024)
10313 Blaszczyk, A; Sady, S; Pacholek, B; Jakubowska, D; Grzybowska-Brzezinska, M; Krzywonos, M; Popek, S Sustainable Management Strategies for Fruit Processing Byproducts for Biorefineries: A Review(2024)Sustainability, 16, 5
14276 Farru, G; Cappai, G; Carucci, A; De Gioannis, G; Asunis, F; Milia, S; Muntoni, A; Perra, M; Serpe, A A cascade biorefinery for grape marc: Recovery of materials and energy through thermochemical and biochemical processes(2022)
14165 Fernandez, A; Sette, P; Echegaray, M; Soria, J; Salvatori, D; Mazza, G; Rodriguez, R Clean recovery of phenolic compounds, pyro-gasification thermokinetics, and bioenergy potential of spent agro-industrial bio-wastes(2023)Biomass Conversion And Biorefinery, 13, 14
23530 Castro, LEN; Barroso, TLCT; Sganzerla, WG; Costa, JM; Saia, FT; Colpini, LMS; Forster-Carneiro, T Subcritical water hydrolysis of grape pomace as a sustainable pretreatment for anaerobic digestion in a biorefinery concept(2024)
27397 Narisetty, V; Nagarajan, S; Gadkari, S; Ranade, V; Zhang, JX; Patchigolla, K; Bhatnagar, A; Awasthi, MK; Pandey, A; Kumar, V Process optimization for recycling of bread waste into bioethanol and biomethane: A circular economy approach(2022)
27460 Cassani, L; Gomez-Zavaglia, A Sustainable Food Systems in Fruits and Vegetables Food Supply Chains(2022)
29160 Foltanyi, F; Hawkins, JE; Panovic, I; Bird, EJ; Gloster, TM; Lancefield, CS; Westwood, NJ Analysis of the product streams obtained on butanosolv pretreatment of draff(2020)
9837 Negro, MJ; Alvarez, C; Doménech, P; Iglesias, R; Ballesteros, I Sugars Production from Municipal Forestry and Greening Wastes Pretreated by an Integrated Steam Explosion-Based Process(2020)Energies, 13.0, 17
Scroll