Knowledge Agora



Similar Articles

Title Valorization of swine wastewater in a circular economy approach: Effects of hydraulic retention time on microalgae cultivation
ID_Doc 5852
Authors Silveira, CF; de Assis, LR; Oliveira, APD; Calijuri, ML
Title Valorization of swine wastewater in a circular economy approach: Effects of hydraulic retention time on microalgae cultivation
Year 2021
Published
Abstract To optimize the swine wastewater (SWW) treatment, this study investigated different hydraulic retention times (HRTs) for microalgae cultivation. For this purpose, five pilot-scale reactors operated in semi-continuous flow, with HRTs equal to 9, 12, 15, 18, 21 days were evaluated in terms of SWW polishing and biomass production. The effluent treatment was discussed accompanied by principal component analysis, which allowed identification of causes of variance in the data set, ideal for studies with real effluent and influenced by environmental conditions. All reactors show satisfactory removals of N-NH4+ (91.6-95.3%), COD (15.8-39.9%), DO increment (in average 7.5 mg O-2/L) and, only the longest HRT (21 days) was able to remove Ps (21%). The results obtained indicated that a consortium of microalgae and bacteria was developed for all the tested HRTs. On the other hand, HRT = 12 days provided a healthier culture of photosynthesizing organisms (chl-a/VSS = 3.04%). Carbohydrates (20.8-31.3%) and proteins (2.7-16.2%) were the compounds of commercial interest in the highest proportion in the biomass of all reactors, with contents comparable to that of terrestrial crops. Thus, it was suggested a valorization route of these compounds of high added value to return to pig farming, where the nutrients were intended to supplement the swine feed and clarified water for cleaning the pig stalls. Thus, in the circular economy context, this research contributes to water footprint reduction and the sustainability of the pig farming production chain. The economic and environmental analysis of the route is suggested to enable its implementation on a large scale, as well as further technical feasibility research (reactor types, exposure to external environment, evaluation of pathogen removal and animal feed supplementation from SWW microalgae biomass). (C) 2021 Elsevier B.V. All rights reserved.
PDF

Similar Articles

ID Score Article
20570 López-Pacheco, IY; Silva-Núñez, A; García-Perez, JS; Carrillo-Nieves, D; Salinas-Salazar, C; Castillo-Zacarías, C; Afewerki, S; Barceló, D; Iqbal, HNM; Parra-Saldívar, R Phyco-remediation of swine wastewater as a sustainable model based on circular economy(2021)
3501 Vaz, SA; Badenes, SM; Pinheiro, HM; Martins, RC Recent reports on domestic wastewater treatment using microalgae cultivation: Towards a circular economy(2023)
13081 Magalhaes, IB; Ferreira, J; Castro, JD; Assis, LRD; Calijuri, ML Agro-industrial wastewater-grown microalgae: A techno-environmental assessment of open and closed systems(2022)
7396 Cheng, HH; Narindri, B; Chu, H; Whang, LM Recent advancement on biological technologies and strategies for resource recovery from swine wastewater(2020)
21220 Cunha-Chiamolera, TPL; Urrestarazu, M; Morillas-España, A; Ortega, R; Miralles, I; González-López, CV; Carbajal-Valenzuela, IA Evaluation of the reuse of regenerated water from microalgae-related wastewater treatment processes in horticulture(2024)
8973 Zhou, LL; Liang, M; Zhang, DQ; Niu, XJ; Li, K; Lin, ZT; Luo, XJ; Huang, YY Recent advances in swine wastewater treatment technologies for resource recovery: A comprehensive review(2024)
25272 Nishshanka, GKSH; Thevarajah, B; Nimarshana, PHV; Prajapati, SK; Ariyadasa, TU Real-time integration of microalgae-based bioremediation in conventional wastewater treatment plants: Current status and prospects(2023)
23521 Esteves, AF; Soares, SM; Salgado, EM; Boaventura, RAR; Pires, JCM Microalgal Growth in Aquaculture Effluent: Coupling Biomass Valorisation with Nutrients Removal(2022)Applied Sciences-Basel, 12, 24
6232 Li, G; Hu, RC; Wang, N; Yang, TL; Xu, FZ; Li, JL; Wu, JH; Huang, ZG; Pan, MM; Lyu, T Cultivation of microalgae in adjusted wastewater to enhance biofuel production and reduce environmental impact: Pyrolysis performances and life cycle assessment(2022)
20627 Blanco-Vieites, M; Alvarez-Gil, M; Delgado, F; García-Ruesgas, L; Rodríguez, E Livestock wastewater bioremediation through indigenous microalgae culturing as a circular bioeconomy approach as cattle feed(2024)
Scroll