Knowledge Agora



Similar Articles

Title Sustainable Reuse and Recycling of Spent Li-Ion batteries from Electric Vehicles: Chemical, Environmental, and Economical Perspectives
ID_Doc 6165
Authors Hantanasirisakul, K; Sawangphruk, M
Title Sustainable Reuse and Recycling of Spent Li-Ion batteries from Electric Vehicles: Chemical, Environmental, and Economical Perspectives
Year 2023
Published Global Challenges, 7, 4
Abstract The rapidly increasing adoption of electric vehicles (EVs) worldwide is causing high demand for production of lithium-ion batteries (LIBs). Tremendous efforts have been made to develop different components of LIBs in addition to design of battery pack architectures as well as manufacturing processes to make better batteries with affordable prices. Nonetheless, sustainable use of LIBs relies on the availability and cost of rare metals, which are naturally concentrated in a few countries. In addition, toxic electrolytes used in LIBs pose concerns on environmental impacts if LIBs are not handled properly after decommissioned from EVs. Therefore, it is paramount to realize effective utilization of spent LIBs, where their remaining capacities can be reused in less demanding applications. Finally, electrode materials and other valuable components of LIBs can be recovered via recycling, completing their circular life cycle. In this review, available options of LIBs after their retirement from EV applications, including battery second use, repair of electrode materials by direct regeneration, and material recovery by hydrometallurgical or pyrometallurgical processes are discussed. Throughout the review, the discussion is based around current available technologies, their environmental impacts, and economic feasibility as well as provided examples of pilot and industrial scale adoption of the processes.
PDF https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/gch2.202200212

Similar Articles

ID Score Article
11073 Cao, Y; Li, JF; Ji, HC; Wei, XJ; Zhou, GM; Cheng, HM A review of direct recycling methods for spent lithium-ion batteries(2024)
9495 Biswal, BK; Zhang, B; Tran, PTM; Zhang, JJ; Balasubramanian, R Recycling of spent lithium-ion batteries for a sustainable future: recent advancements(2024)Chemical Society Reviews, 53.0, 11
16765 Roy, JJ; Rarotra, S; Krikstolaityte, V; Zhuoran, KW; Cindy, YDI; Tan, XY; Carboni, M; Meyer, D; Yan, QY; Srinivasan, M Green Recycling Methods to Treat Lithium-Ion Batteries E-Waste: A Circular Approach to Sustainability(2022)Advanced Materials, 34, 25
30033 Prazanová, A; Plachy, Z; Koci, J; Fridrich, M; Knap, V Direct Recycling Technology for Spent Lithium-Ion Batteries: Limitations of Current Implementation(2024)Batteries-Basel, 10.0, 3
4416 Mossali, E; Picone, N; Gentilini, L; Rodrìguez, O; Pérez, JM; Colledani, M Lithium-ion batteries towards circular economy: A literature review of opportunities and issues of recycling treatments(2020)
9714 Piatek, J; Afyon, S; Budnyak, TM; Budnyk, S; Sipponen, MH; Slabon, A Sustainable Li-Ion Batteries: Chemistry and Recycling(2021)Advanced Energy Materials, 11.0, 43
32830 Marchese, D; Giosuè, C; Staffolani, A; Conti, M; Orcioni, S; Soavi, F; Cavalletti, M; Stipa, P An Overview of the Sustainable Recycling Processes Used for Lithium-Ion Batteries(2024)Batteries-Basel, 10, 1
7838 Fujita, T; Chen, H; Wang, KT; He, CL; Wang, YB; Dodbiba, G; Wei, YZ Reduction, reuse and recycle of spent Li-ion batteries for automobiles: A review(2021)International Journal Of Minerals Metallurgy And Materials, 28, 2
8976 Zanoletti, A; Carena, E; Ferrara, C; Bontempi, E; Burheim, OS A Review of Lithium-Ion Battery Recycling: Technologies, Sustainability, and Open Issues(2024)Batteries-Basel, 10.0, 1
12349 Wu, XX; Liu, YH; Wang, JX; Tan, YH; Liang, Z; Zhou, GM Toward Circular Energy: Exploring Direct Regeneration for Lithium-Ion Battery Sustainability(2024)Advanced Materials, 36.0, 32
Scroll