Knowledge Agora



Similar Articles

Title Recovery of polyhydroxyalkanoates (PHAs) from wastewater: A review
ID_Doc 6293
Authors Mannina, G; Presti, D; Montiel-Jarillo, G; Carrera, J; Suárez-Ojeda, ME
Title Recovery of polyhydroxyalkanoates (PHAs) from wastewater: A review
Year 2020
Published
Abstract Polyhydroxyalkanoates (PHAs) are biopolyesters accumulated as carbon and energy storage materials under unbalanced growth conditions by various microorganisms. They are one of the most promising potential substitutes for conventional non-biodegradable plastics due to their similar physicochemical properties, but most important, its biodegradability. Production cost of PHAs is still a great barrier to extend its application at industrial scale. In order to reduce that cost, research is focusing on the use of several wastes as feedstock (such as agro-industrial and municipal organic waste and wastewater) in a platform based on mixed microbial cultures. This review provides a critical illustration of the state of the art of the most likely-to-be-scale-up PHA production processes using mixed microbial cultures platform and waste streams as feedstock, with a particular focus on both, upstream and downstream processes. Current pilot scale studies, future prospects, challenges and developments in the field are also highlighted.
PDF https://ddd.uab.cat/pub/artpub/2020/29bf38c42bbb/Mannina_BITE2019_ReviewPHA_accepted.pdf

Similar Articles

ID Score Article
13152 Ahuja, V; Singh, PK; Mahata, C; Jeon, JM; Kumar, G; Yang, YH; Bhatia, SK A review on microbes mediated resource recovery and bioplastic (polyhydroxyalkanoates) production from wastewater(2024)Microbial Cell Factories, 23, 1
8026 Abbas, MI; Amelia, TSM; Bhubalan, K; Vigneswari, S; Ramakrishna, S; Amirul, AAA Bioprospecting waste for polyhydroxyalkanoates production: embracing low carbon bioeconomy(2024)
20576 Zhou, W; Bergsma, S; Colpa, DI; Euverink, GJW; Krooneman, J Polyhydroxyalkanoates (PHAs) synthesis and degradation by microbes and applications towards a circular economy(2023)
9197 González-Rojo, S; Paniagua-García, AI; Díez-Antolínez, R Advances in Microbial Biotechnology for Sustainable Alternatives to Petroleum-Based Plastics: A Comprehensive Review of Polyhydroxyalkanoate Production(2024)Microorganisms, 12.0, 8
6714 Bagatella, S; Ciapponi, R; Ficara, E; Frison, N; Turri, S Production and Characterization of Polyhydroxyalkanoates from Wastewater via Mixed Microbial Cultures and Microalgae(2022)Sustainability, 14, 6
24957 Fernandez-Dacosta, C; Posada, JA; Kleerebezem, R; Cuellar, MC; Ramirez, A Microbial community-based polyhydroxyalkanoates (PHAs) production from wastewater: Techno-economic analysis and ex-ante environmental assessment(2015)
29156 Haque, MA; Priya, A; Hathi, ZJ; Qin, ZH; Mettu, S; Lin, CSK Advancements and current challenges in the sustainable downstream processing of bacterial polyhydroxyalkanoates(2022)
9579 Jin, Y; de Leeuw, KD; Strik, DPBTB Microbial Recycling of Bioplastics via Mixed-Culture Fermentation of Hydrolyzed Polyhydroxyalkanoates into Carboxylates(2023)Materials, 16.0, 7
7729 Koller, M; Mukherjee, A Polyhydroxyalkanoates - Linking Properties, Applications, and End-of-life Options(2020)Chemical And Biochemical Engineering Quarterly, 34, 3
10135 Mozejko-Ciesielska, J; Ray, S; Sankhyan, S Recent Challenges and Trends of Polyhydroxyalkanoate Production by Extremophilic Bacteria Using Renewable Feedstocks(2023)Polymers, 15, 22
Scroll