Knowledge Agora



Similar Articles

Title Composite as a Material of the Future in the Era of Green Deal Implementation Strategies
ID_Doc 62978
Authors Czapla, A; Ganesapillai, M; Drewnowski, J
Title Composite as a Material of the Future in the Era of Green Deal Implementation Strategies
Year 2021
Published Processes, 9, 12
Abstract Composite materials have become synonymous with modernity, desired in nearly every aspect of our daily lives, from simple everyday objects to sanitary facilities, pipelines, the construction of modern sewer networks, their renovation, water supply, and storage reservoirs, to complex structures-automotive, planes, and space science. Composites have seen a considerable rise in attention owing to their characteristics, durability, strength, reduced energy usage during the manufacturing process, and decreased transportation costs. Composite materials consistently outperform steel, cast iron, and concrete in terms of CO2 emissions. Additionally, these materials have a long service life of about 150 years or more and are corrosion-resistant. Today, continued sustainable development is contingent upon access to safe drinking water and the availability of its resources and modes of conveyance. As a result, composite pipes have considerable potential due to their very low flow rate, which directly affects the prices of drinking water pumping and irrigation systems. However, there are also certain disadvantages associated with fibre-reinforced composites, such as easy surface damage, low heat resistance (up to 220 degrees C), long product forming time, and high cost of the material. Additionally, the product's initial high durability and extended life cycle, coupled with high abrasion resistance, anisotropic strength, and stiffness in the final phase, prove to be unfavourable since composite material cannot be rapidly reintroduced into the manufacturing cycle. However, its disposal requires a negligible amount of energy. The article discusses the various composite materials available, their applications, and the potential for further developing their manufacturing technology toward nanocomposites and composites of natural origin that are readily biodegradable at the end of their service life; dubbed "green composites". The study's findings are unequivocal: this class of composite materials warrants further investigation in the future since they align perfectly with the concept of sustainable economic growth and Green Deal implementation.
PDF https://www.mdpi.com/2227-9717/9/12/2238/pdf?version=1639392957

Similar Articles

ID Score Article
22731 Patton, N Composites And Sustainability: What Is The State Of The Art(2023)
4966 Alhazmi, H; Shah, SAR; Anwar, MK; Raza, A; Ullah, MK; Iqbal, F Utilization of Polymer Concrete Composites for a Circular Economy: A Comparative Review for Assessment of Recycling and Waste Utilization(2021)Polymers, 13, 13
6691 dos Santos, GZB; Caldas, LR; Melo, JD; Monteiro, NBR; Rafael, SIM; da Silva, NM Circular alternatives in the construction industry: An environmental performance assessment of sisal fiber-reinforced composites(2022)
28609 Soni, A; Kumar, S; Majumder, B; Dam, H; Dutta, V; Das, PK Synergy of waste plastics and natural fibers as sustainable composites for structural applications concerning circular economy(2023)
1063 Chatziparaskeva, G; Papamichael, I; Voukkali, I; Loizia, P; Sourkouni, G; Argirusis, C; Zorpas, AA End-of-Life of Composite Materials in the Framework of the Circular Economy(2022)Microplastics, 1, 3
6753 Krauklis, AE; Karl, CW; Gagani, AI; Jorgensen, JK Composite Material Recycling Technology-State-of-the-Art and Sustainable Development for the 2020s(2021)Journal Of Composites Science, 5, 1
26613 Adhikary, SK; Ashish, DK Turning waste expanded polystyrene into lightweight aggregate: Towards sustainable construction industry(2022)
13397 Shih, YF; Chang, CW; Hsu, TH; Dai, WY Application of Sustainable Wood-Plastic Composites in Energy-Efficient Construction(2024)Buildings, 14, 4
8185 Das, O; Babu, K; Shanmugam, V; Sykam, K; Tebyetekerwa, M; Neisiany, RE; Försth, M; Sas, G; Gonzalez-Libreros, J; Capezza, AJ; Hedenqvist, MS; Berto, F; Ramakrishna, S Natural and industrial wastes for sustainable and renewable polymer composites(2022)
19649 Lunetto, V; Galati, M; Settineri, L; Iuliano, L Sustainability in the manufacturing of composite materials: A literature review and directions for future research(2023)
Scroll