Knowledge Agora



Similar Articles

Title Wood-plastic composites as potential applications of recycled plastics of electronic waste and recycled particleboard
ID_Doc 6337
Authors Sommerhuber, PF; Wang, TY; Krause, A
Title Wood-plastic composites as potential applications of recycled plastics of electronic waste and recycled particleboard
Year 2016
Published
Abstract Wood-plastic composites were injection-molded from recycled acrylonitrile butadiene styrene and polystyrene from post-consumer electronics in the interest of resource efficiency and ecological product design. The wood content was raised in two steps from 0% to 30% and 60%. Reinforcement performance of recycled particleboard was compared to virgin Norway spruce. Styrene maleic anhydride copolymer was used as the coupling agent in the composites with a 60% wood proportion to investigate the influence on interfacial adhesion. The composites were characterized by using physical and mechanical standard testing methods. Results showed increased stiffness (flexural and tensile modulus of elasticity), water uptake and density with the incorporation of wood particles to the plastic matrices. Interestingly, strength (flexural and tensile) increased as well. Wood particles from Norway spruce exhibited reinforcement in terms of strength and stiffness. The same results were achieved with particleboard particles in terms of stiffness, but the strength of the composites was negatively affected. The coupling agent affected the strength properties beneficially, which was not observed for the stiffness of the composites. The presence of cadmium, chromium, copper, arsenic and lead in the recycled resources was found by an elementary analysis. This can be linked to color pigments in recycled plastics and insufficient separation processes of recycled wood particles for particleboard production. (C) 2016 Elsevier Ltd. All rights reserved.
PDF

Similar Articles

ID Score Article
14147 Ramesh, M; Rajeshkumar, L; Sasikala, G; Balaji, D; Saravanakumar, A; Bhuvaneswari, V; Bhoopathi, R A Critical Review on Wood-Based Polymer Composites: Processing, Properties, and Prospects(2022)Polymers, 14, 3
17310 Martikka, O; Kärki, T Promoting Recycling of Mixed Waste Polymers in Wood-Polymer Composites Using Compatibilizers(2019)Recycling, 4, 1
7120 Basalp, D; Tihminlioglu, F; Sofuoglu, SC; Inal, F; Sofuoglu, A Utilization of Municipal Plastic and Wood Waste in Industrial Manufacturing of Wood Plastic Composites(2020)Waste And Biomass Valorization, 11, 10
14865 Maksymiuk, G; Jezo, A; Rizikovs, J Selected physical and mechanical properties of particleboards manufactured with addition of Betula bark post-extraction residues(2024)
13240 Silva, VU; Nascimento, MF; Oliveira, PR; Panzera, TH; Rezende, MO; Silva, DAL; Aquino, VBD; Lahr, FAR; Christoforo, AL Circular vs. linear economy of building materials: A case study for particleboards made of recycled wood and biopolymer vs. conventional particleboards(2021)
22021 Hamouda, T; Aly, NM Circular Economy of Composite Materials Using Waste Jute Fibers and Recycled Polyester Fibers as a Reinforcement for Packaging Applications(2022)Egyptian Journal Of Chemistry, 65.0, 13
4519 Wronka, A; Kowaluk, G Supporting Circular Economy Principles by Recycling Window Frames into Particleboard(2024)Materials, 17, 16
5873 Platnieks, O; Barkane, A; Ijudina, N; Gaidukova, G; Thakur, VK; Gaidukovs, S Sustainable tetra pak recycled cellulose/Poly(Butylene succinate) based woody-like composites for a circular economy(2020)
5817 Czarnecka-Komorowska, D; Wachowiak, D; Gizelski, K; Kanciak, W; Ondrusova, D; Pajtasová, M Sustainable Composites Containing Post-Production Wood Waste as a Key Element of the Circular Economy: Processing and Physicochemical Properties(2024)Sustainability, 16, 4
12649 Lee, SH; Lum, WC; Boon, JG; Kristak, L; Antov, P; Pedzik, M; Rogozinski, T; Taghiyari, HR; Lubis, MAR; Fatriasari, W; Yadav, SM; Chotikhun, A; Pizzi, A Particleboard from agricultural biomass and recycled wood waste: a review(2022)
Scroll