Knowledge Agora



Similar Articles

Title Recycling-oriented cathode materials design for lithium-ion batteries: Elegant structures versus complicated compositions
ID_Doc 6432
Authors Tan, JH; Wang, Q; Chen, S; Li, ZH; Sun, J; Liu, W; Yang, WS; Xiang, X; Sun, XM; Duan, X
Title Recycling-oriented cathode materials design for lithium-ion batteries: Elegant structures versus complicated compositions
Year 2021
Published
Abstract Intense and large-scale applications of lithium-ion batteries have brought significant convenience to our daily life; however, when these batteries enter recycling, they cause major challenges such as environmental pollution and wastage of resources. For the sustainable point of view, it is preferable to establish a full-cycle value chain from designing and manufacturing of electrodes to recycling of spent lithium-ion batteries. It is important to perform materials and product design as the first and most important step in the cycling process, particularly for the cathode materials. This critical review focuses on the issues in element recycling of the spent cathode materials, and discusses the criteria for cathode materials design that can simplify the recycling process and avoid a build-up of hazardous materials. Using Li transition metal oxides (LiCoO2, LiNi(1-x-y)Co(x)MnyO(2), x + y < 1) as an example, it is shown that the crystal structure, morphology, and microstructure also play vital roles in enhancing the electrochemical performance of the cathode materials. Compared to complicated composition in the cathode materials, the structure-regulated design has a unique potential to build a circular economy model featuring the lowest energy consumption and the least environmental disruption. It not only highlights the green and sustainable aspects of the recovery of metal resources, but also prospects them with recycling-oriented materials design. The circular economy can be built with both high efficiency and stable battery performance.
PDF

Similar Articles

ID Score Article
2282 dos Santos, MP; Garde, IAA; Ronchini, CMB; Cardozo, L; de Souza, GBM; Abbade, MLF; Regone, NN; Jegatheesan, V; de Oliveira, JA A technology for recycling lithium-ion batteries promoting the circular economy: The RecycLib(2021)
20750 Gnutzmann, MM; Makvandi, A; Ying, BX; Buchmann, J; Lüther, MJ; Helm, B; Nagel, P; Peterlechner, M; Wilde, G; Gomez-Martin, A; Kleiner, K; Winter, M; Kasnatscheew, J Direct Recycling at the Material Level: Unravelling Challenges and Opportunities through a Case Study on Spent Ni-Rich Layered Oxide-Based Cathodes(2024)
26849 Nair, AV; Jayasree, SS; Baji, DS; Nair, S; Santhanagopalan, D Environment-friendly acids for leaching transition metals from spent-NMC532 cathode and sustainable conversion to potential anodes(2024)Rsc Sustainability, 2, 8
28673 Neumann, J; Petranikova, M; Meeus, M; Gamarra, JD; Younesi, R; Winter, M; Nowak, S Recycling of Lithium-Ion Batteries-Current State of the Art, Circular Economy, and Next Generation Recycling(2022)Advanced Energy Materials, 12.0, 17
8504 Du, H; Kang, YQ; Li, CL; Zhao, Y; Wozny, J; Li, T; Tian, Y; Lu, J; Wang, L; Kang, FY; Tavajohi, N; Li, BH Easily recyclable lithium-ion batteries: Recycling-oriented cathode design using highly soluble LiFeMnPO4 with a water-soluble binder(2023)Battery Energy, 2.0, 4
10137 Xiao, X; Wang, L; Wu, YQ; Song, YZ; Chen, ZH; He, XM Cathode regeneration and upcycling of spent LIBs: toward sustainability(2023)Energy & Environmental Science, 16, 7
13503 Bhattacharyya, S; Roy, S; Vajtai, R Emerging Processes for Sustainable Li-Ion Battery Cathode Recycling(2024)
9495 Biswal, BK; Zhang, B; Tran, PTM; Zhang, JJ; Balasubramanian, R Recycling of spent lithium-ion batteries for a sustainable future: recent advancements(2024)Chemical Society Reviews, 53.0, 11
3956 Sheth, RP; Ranawat, NS; Chakraborty, A; Mishra, RP; Khandelwal, M The Lithium-Ion Battery Recycling Process from a Circular Economy Perspective-A Review and Future Directions(2023)Energies, 16, 7
13314 Li, YR; Cai, JH; Wang, JY; Xu, S; Li, YJ; He, W; Wang, ZZ; Yang, S; Yan, X A Comprehensive Review on Reductive Recycling of Cathode Materials of Spent Lithium-Ion Batteries(2024)Chemistry-A European Journal, 30, 35
Scroll