Knowledge Agora



Similar Articles

Title Energy and environmental assessment of hydrogen from biomass sources: Challenges and perspectives
ID_Doc 64480
Authors Buffi, M; Prussi, M; Scarlat, N
Title Energy and environmental assessment of hydrogen from biomass sources: Challenges and perspectives
Year 2022
Published
Abstract Hydrogen is considered as one of the pillars of the European decarbonisation strategy, boosting a novel concept of the energy system in line with the EU's commitment to achieve clean energy transition and reach the European Green Deal carbon neutrality goals by 2050. Hydrogen from biomass sources can significantly contribute to integrate the renewable hydrogen supply through electrolysis at large-scale production. Specifically, it can cover the non-continuous production of green hydrogen coming from solar and wind energy, to offer an alternative solution to such industrial sectors necessitating of stable supply. Biomass-derived hydrogen can be produced either from thermochemical pathways (i.e., pyrolysis, liquefaction, and gasification) or from biological routes (i.e., direct or indirect-biophotolysis, biological water-gas shift reaction, photo-and dark-fermentation). The paper reviews several production pathways to produce hydrogen from biomass or biomass-derived sources (biogas, liquid bio-intermediates, sugars) and provides an exhaustive review of the most promising technologies towards commercialisation. While some pathways are still at low technology readiness level, others such as the steam bio-methane reforming and biomass gasification are ready for an immediate market uptake. The various production pathways are evaluated in terms of energy and environmental performances, highlighting the limits and barriers of the available LCA studies. The paper shows that hydrogen production technologies from biomass appears today to be an interesting option, almost ready to constitute a complementing option to electrolysis.
PDF https://doi.org/10.1016/j.biombioe.2022.106556

Similar Articles

ID Score Article
26588 Rambhujun, N; Salman, MS; Wang, T; Pratthana, C; Sapkota, P; Costalin, M; Lai, QW; Aguey-Zinsou, KF Renewable hydrogen for the chemical industry(2020)
27157 Eloffy, MG; Elgarahy, AM; Saber, AN; Hammad, A; El-Sherif, DM; Shehata, M; Mohsen, A; Elwakeel, KZ Biomass-to-sustainable biohydrogen: Insights into the production routes, and technical challenges(2022)
33362 Nguyen, V; Nguyen-Thi, TX; Nguyen, PQP; Tran, VD; Agbulut, U; Nguyen, LH; Balasubramanian, D; Tarelko, W; Bandh, SA; Pham, NDK Recent advances in hydrogen production from biomass waste with a focus on pyrolysis and gasification(2024)
19855 Shanmugam, S; Mathimani, T; Rajendran, K; Sekar, M; Rene, ER; Chi, NTL; Ngo, HH; Pugazhendhi, A Perspective on the strategies and challenges in hydrogen production from food and food processing wastes(2023)
27486 Boddula, R; Lee, YY; Masimukku, S; Chang-Chien, GP; Pothu, R; Srivastava, RK; Sarangi, PK; Selvaraj, M; Basumatary, S; Al-Qahtani, N Sustainable hydrogen production: Solar-powered biomass conversion explored through (Photo)electrochemical advancements(2024)
14755 Sarkar, O; Modestra, JA; Rova, U; Christakopoulos, P; Matsakas, L Waste-Derived Renewable Hydrogen and Methane: Towards a Potential Energy Transition Solution(2023)Fermentation-Basel, 9, 4
24700 Anjum, S; Aslam, S; Hussain, N; Bilal, M; Boczkaj, G; Smulek, W; Jesionowski, T; Iqbal, HMN Bioreactors and biophoton-driven biohydrogen production strategies(2023)International Journal Of Hydrogen Energy, 48, 55
32934 Nikolaidis, P; Poullikkas, A A comparative overview of hydrogen production processes(2017)
64405 Bertasini, D; Battista, F; Rizzioli, F; Frison, N; Bolzonella, D Decarbonization of the European natural gas grid using hydrogen and methane biologically produced from organic waste: A critical overview(2023)
64504 Jansons, L; Zemite, L; Zeltins, N; Geipele, I; Backurs, A Green And Sustainable Hydrogen In Emerging European Smart Energy Framework(2023)Latvian Journal Of Physics And Technical Sciences, 60, 1
Scroll