Knowledge Agora



Similar Articles

Title Non-alloy Mg anode for Ni-MH batteries: Multiple approaches towards a stable cycling performance
ID_Doc 64663
Authors Xu, YL; Mulder, FM
Title Non-alloy Mg anode for Ni-MH batteries: Multiple approaches towards a stable cycling performance
Year 2021
Published International Journal Of Hydrogen Energy, 46, 37
Abstract Mg attracts much research interest as anode material for Ni-MH batteries thanks to its lightweight, cost-effectiveness and high theoretical capacity (2200 mA h g-1). However, its practical application is tremendously challenged by the poor hydrogen sorption kinetics, passivation from aggressive aqueous electrolytes, and insulating nature of MgH2. Mg-based alloys exhibit enhanced hydrogen sorption kinetics and electrical conductivity, but sig-nificant amount of costly transition metal elements are required. In this work, we have, for the first time, utilized non-alloyed but catalyzed Mg as anode for Ni-MH batteries. 5 mol.% TiF3 was added to nanosized Mg for accelerating the hydrogen sorption kinetics. Several strategies for preventing the problematic passivation of Mg have been studied, including protective encapsulation of the electrode and utilizing room-temperature/high-temperature ionic liquids and an alkaline polymer membrane as working electrolyte. Promising electrochemical performance has been achieved in this Mg-TiF3 composite anode based Ni-MH batteries with room for further improvements.
PDF https://doi.org/10.1016/j.ijhydene.2021.03.073

Similar Articles

ID Score Article
63953 Xu, YL; Mulder, FM TiF3 catalyzed MgH2 as a Li/Na ion battery anode(2018)International Journal Of Hydrogen Energy, 43, 43
Scroll