Knowledge Agora



Similar Articles

Title Effect of Recycled Concrete Aggregate Utilization Ratio on Thermal Properties of Self-Cleaning Lightweight Concrete Facades
ID_Doc 64803
Authors Beytekin, HE; Sahin, HG; Mardani, A
Title Effect of Recycled Concrete Aggregate Utilization Ratio on Thermal Properties of Self-Cleaning Lightweight Concrete Facades
Year 2024
Published Sustainability, 16, 14
Abstract In today's environment, where energy is desired to be used more efficiently, it has been understood that the interest in the use of lightweight concrete with superior performance in terms of thermal insulation properties has increased. On the other hand, it has been stated that construction waste increases rapidly, especially after severe earthquakes. In this context, encouraging the use of recycled concrete waste and efficient disposal of construction and demolition waste is of great importance for the European Green Deal. It is also known that pollutants such as COx and NOx stick to facades over time, causing environmental pollution and visual deterioration. It has been reported that materials with photocatalytic properties are used in lightweight concrete facade elements to prevent such problems. This study examines the effect of using recycled concrete aggregates on the thermal properties of self-cleaning lightweight concrete mixtures (SCLWC). For this purpose, an SCLWC containing 1% TiO2 and 100% pumice aggregate was prepared. By replacing pumice aggregate with recycled concrete aggregate at the rates of 15%, 25%, 35%, 45% and 50%, four different SCLWCs with self-cleaning properties were produced. High-temperature resistance, thermal conductivity performance, microstructure analysis and photocatalytic properties of the produced mixtures were examined. It has been understood that the unit volume weight loss of SCLWC mixtures exposed to high temperatures generally decreases due to the increase in the recycled concrete-aggregate substitution rate. However, it was determined that the loss of compressive strength increased with the increase in the amount of recycled concrete-aggregate replacement. Additionally, it was determined that the thermal-conductivity coefficient values of the mixtures decreased with the use of pumice. After SCLWC mixtures were exposed to 900 degrees C, small round-shaped crystals formed instead of C-S-H crystals.
PDF https://doi.org/10.3390/su16146056

Similar Articles

ID Score Article
15452 Moreno-Juez, J; Vegas, IJ; Gebremariam, AT; Garcia-Cortes, V; Di Maio, F Treatment of end-of-life concrete in an innovative heating-air classification system for circular cement-based products(2020)
17231 Xiao, JZ; Zhang, HH; Tang, YX; Lu, ZY; Ye, TH; Duan, ZH; Sui, TB; Xiao, XW Principles for waste concrete recycling and basic problems of recycled concrete(2023)Chinese Science Bulletin-Chinese, 68, 5
19815 Cantero, B; Bravo, M; de Brito, J; del Bosque, IFS; Medina, C Thermal Performance of Concrete with Recycled Concrete Powder as Partial Cement Replacement and Recycled CDW Aggregate(2020)Applied Sciences-Basel, 10.0, 13
6276 Juan-Valdés, A; Rodríguez-Robles, D; García-González, J; Gómez, MISD; Guerra-Romero, MI; De Belie, N; Morán-del Pozo, JM Mechanical and microstructural properties of recycled concretes mixed with ceramic recycled cement and secondary recycled aggregates. A viable option for future concrete(2021)
6209 Albero, V; Reig, L; Hernández-Figueirido, D; Roig-Flores, M; Melchor-Eixea, A; Piquer, A; Pitarch, AM Fire and postfire compressive strength of recycled aggregate concrete made with ceramic stoneware(2024)
8334 Corbu, O; Puskas, A; Dragomir, ML; Har, N; Toma, IO Eco-Innovative Concrete for Infrastructure Obtained with Alternative Aggregates and a Supplementary Cementitious Material (SCM)(2023)Coatings, 13.0, 10
26613 Adhikary, SK; Ashish, DK Turning waste expanded polystyrene into lightweight aggregate: Towards sustainable construction industry(2022)
9060 Tanash, AO; Muthusamy, K; Budiea, AMA; Fauzi, MA; Jokhio, G; Jose, R A review on the utilization of ceramic tile waste as cement and aggregates replacement in cement based composite and a bibliometric assessment(2023)
20930 Al-Hamrani, A; Kucukvar, M; Alnahhal, W; Mahdi, E; Onat, NC Green Concrete for a Circular Economy: A Review on Sustainability, Durability, and Structural Properties(2021)Materials, 14, 2
8679 Al-Janabi, A; Black, L; Adu-Amankwah, S Improvement of Recycled Cement Powder Characteristics from C&DWastes by Accelerated CO2 Curing and/or Heat Treatment(2024)
Scroll