Knowledge Agora



Similar Articles

Title Smart electroactive self-repairable coating involving end-of-life aircraft prepregs by mechanical recycling
ID_Doc 6569
Authors Espeute, E; Martinez-Diaz, D; Vázquez-Sánchez, P; Martín, Z; Del Rosario, G; Jiménez-Suárez, A; Prolongo, SG
Title Smart electroactive self-repairable coating involving end-of-life aircraft prepregs by mechanical recycling
Year 2024
Published
Abstract The environmental impact of the Carbon Fiber Reinforced Polymers (CFRPs) industry, particularly due to waste generation during manufacturing and end-of-life phases, is compelling major industrial entities to reconsider a circular economy approach for their materials and to comply with emerging regulations. This study explores the potential of recycled carbon fibers (rCFs) derived from the mechanical recycling of prepreg waste. Mechanical recycling was selected for its cost-effectiveness and moderate environmental impact, recovering short rCFs with lengths below 200 mu m. These rCFs, which retain excellent electrical properties, are incorporated into an epoxy matrix with Polycaprolactone (PCL) to create a multifunctional coating with self-healing capabilities. The resulting composite material exhibited significant improvements in electrical conductivity, achieving up to 16.50 S/m, and demonstrated effective Joule effect heating, exceeding 200 degrees C with 20 V applied for a composite containing 15 wt% rCF. The self-healing efficiency for surface cracks, activated by the Joule effect, reached 80-90 %, resulting in a 99 % reduction in energy consumption compared to conventional oven heating. Notably, the self-healing mechanism was characterized in real-time within a scanning electron microscope for the first time, providing a comprehensive evaluation of the process. This innovative coating offers promising applications in aviation for anti-icing, deicing, and maintenance reduction, as well as in residential settings as an energy- efficient floor heating solution. This research underscores the potential of mechanically recycled CFRPs to produce high-value, sustainable materials, promoting a circular economy and reducing the environmental footprint of the aeronautical sector.
PDF https://doi.org/10.1016/j.jclepro.2024.143111

Similar Articles

ID Score Article
13319 Martinez-Diaz, D; Espeute, E; Jiménez-Suárez, A; Prolongo, SG Electrical and Joule Heating Capabilities of Multifunctional Coatings based on Recycled Carbon Fiber from Prepreg Scrap(2023)Acs Omega, 8, 49
20248 Manarin, E; Boumezgane, O; Giannino, A; De Fabritiis, V; Griffini, G; Turri, S Towards a zero-waste chemcycling of thermoset polymer composites: Catalyst assisted mild solvolysis for clean carbon fiber liberation and circular coating development(2024)
25744 Zabihi, O; Ahmadi, M; Liu, C; Mahmoodi, R; Li, QX; Naebe, M Development of a low cost and green microwave assisted approach towards the circular carbon fibre composites(2020)
23268 Borges, C; Chicharo, A; Araujo, A; Silva, J; Santos, RM Designing of carbon fiber-reinforced polymer (CFRP) composites for a second-life in the aeronautic industry: strategies towards a more sustainable future(2023)
28718 Aldosari, SM; Alotaibi, BM; Alblalaihid, KS; Aldoihi, SA; Alogab, KA; Alsaleh, SS; Alshamary, DO; Alanazi, TH; Aldrees, SD; Alshammari, BA Mechanical Recycling of Carbon Fiber-Reinforced Polymer in a Circular Economy(2024)Polymers, 16.0, 10
2708 Abbate, E; Mirpourian, M; Brondi, C; Ballarino, A; Copani, G Environmental and Economic Assessment of Repairable Carbon-Fiber-Reinforced Polymers in Circular Economy Perspective(2022)Materials, 15, 9
12384 Zamani, P; Zabihi, O; Ahmadi, M; Mahmoodi, R; Kannangara, T; Joseph, P; Naebe, M Biobased Carbon Fiber Composites with Enhanced Flame Retardancy: A Cradle-to-Cradle Approach(2022)Acs Sustainable Chemistry & Engineering, 10.0, 2
9120 Shi, GL; Li, TC; Zhang, DH; Zhang, JH Recyclable High-performance Carbon Fiber Reinforced Epoxy Composites Based on Dithioacetal Covalent Adaptive Network(2024)
23687 Khalid, MY; Ariff, ZU; Ahmed, W; Arshad, H Recent trends in recycling and reusing techniques of different plastic polymers and their composite materials(2022)
8706 Demski, S; Misiak, M; Majchrowicz, K; Komorowska, G; Lipkowski, A; Stankiewicz, K; Dydek, K; Wasniewski, B; Boczkowska, A; Ehrlich, H Mechanical recycling of CFRPs based on thermoplastic acrylic resin with the addition of carbon nanotubes(2024)Scientific Reports, 14.0, 1
Scroll