Knowledge Agora



Similar Articles

Title Sustainable industrial ecology and environmental analysis: A case of melamine etherified resin fibres
ID_Doc 6613
Authors Vujanovic, A; Puhar, J; Colnik, M; Plohl, O; Vidovic, T; Valh, JV; Skerget, M; Cucek, L
Title Sustainable industrial ecology and environmental analysis: A case of melamine etherified resin fibres
Year 2022
Published
Abstract Increasing global plastic consumption and its related plastic waste have become a major concern in the world. Achieving sustainable development in the plastics industry requires a systematic insight into all the relevant life cycle phases of plastic products and their environmental impacts. This paper utilises the concepts of industrial ecology and the circular economy to evaluate the three key aspects of thermoset plastic materials and their overall life cycle comprehensively: i) Sustainable production, ii) Recycling to obtain secondary products, and iii) End-of-life behaviour. For all three aspects, their environmental impacts are evaluated additionally using the conceptual Life Cycle Assessment (LCA) approach. The industrial ecology approach, together with LCA is per-formed on a case study of melamine etherified resin (MER) fibre, which is a high value-added thermoset plastic, difficult to recycle, and, at the end-of-life, potentially emits hazardous compounds. The potential to sustainably produce MER fibre exclusively from renewable and waste sources is explored, closing the loop on the manufacturing and disposal phases. The hydrothermal decomposition of MER fibres into valuable compounds is investigated as a recycling technology. Regarding the end-of-life, a systematic assessment is conducted of the environmental impacts of discharging such material into soil and water bodies. Cleaner production of MER fibres shows the potential to reduce greenhouse gas footprint up to 67%, while analysis of sustainable recycling and disposal highlights important environmental hotspots.
PDF https://doi.org/10.1016/j.jclepro.2022.133301

Similar Articles

ID Score Article
27236 Vujanovic, A; Puhar, J; Krajnc, D; Awad, P; Cucek, L Reducing the environmental impacts of the production of melamine etherified resin fibre(2022)
4190 Gracida-Alvarez, UR; Xu, H; Benavides, PT; Wang, MC; Hawkins, TR Circular Economy Sustainability Analysis Framework for Plastics: Application for Poly(ethylene Terephthalate) (PET)(2023)Acs Sustainable Chemistry & Engineering, 11, 2
16744 Kolluru, S; Thakur, A; Tamakuwala, D; Kumar, VV; Ramakrishna, S; Chandran, S Sustainable recycling of polymers: a comprehensive review(2024)Polymer Bulletin, 81, 11
25296 Uekert, T; Singh, A; DesVeaux, JS; Ghosh, T; Bhatt, A; Yadav, G; Afzal, S; Walzberg, J; Knauer, KM; Nicholson, SR; Beckham, GT; Carpenter, AC Technical, Economic, and Environmental Comparison of Closed- Loop Recycling Technologies for Common Plastics(2023)Acs Sustainable Chemistry & Engineering, 11, 3
15034 Chairat, S; Gheewala, SH Life cycle assessment and circularity of polyethylene terephthalate bottles via closed and open loop recycling(2023)
28793 Mastellone, ML Technical description and performance evaluation of different packaging plastic waste management's systems in a circular economy perspective(2020)
4364 Ghosh, T; Avery, G; Bhatt, A; Uekert, T; Walzberg, J; Carpenter, A Towards a circular economy for PET bottle resin using a system dynamics inspired material flow model(2023)
10615 Briassoulis, D; Pikasi, A; Hiskakis, M Recirculation potential of post-consumer /industrial bio-based plastics through mechanical recycling - Techno-economic sustainability criteria and indicators(2021)
24969 Roux, M; Varrone, C Assessing the Economic Viability of the Plastic Biorefinery Concept and Its Contribution to a More Circular Plastic Sector(2021)Polymers, 13, 22
4615 Venkatachalam, V; Pohler, M; Spierling, S; Nickel, L; Barner, L; Endres, HJ Design for Recycling Strategies Based on the Life Cycle Assessment and End of Life Options of Plastics in a Circular Economy(2022)Macromolecular Chemistry And Physics, 223, 13
Scroll