Knowledge Agora



Similar Articles

Title An NMR look at an engineered PET depolymerase
ID_Doc 6746
Authors Charlier, C; Gavalda, S; Borsenberger, V; Duquesne, S; Marty, A; Tournier, V; Lippens, G
Title An NMR look at an engineered PET depolymerase
Year 2022
Published Biophysical Journal, 121, 15
Abstract Plastic environmental pollution is a major issue that our generation must face to protect our planet. Plastic recycling has the potential not only to reduce the pollution but also to limit the need for fossil-fuel-based production of new plastics. Enzymes capable of breaking down plastic could thereby support such a circular economy. Polyethylene terephthalate (PET) degrading enzymes have recently attracted considerable interest and have been subjected to intensive enzyme engineering to improve their characteristics. A quadruple mutant of Leaf-branch Compost Cutinase (LCC) was identified as a most efficient and promising enzyme. Here, we use NMR to follow the initial LCC enzyme through its different mutations that lead to its improved performance. We experimentally define the two calcium-binding sites and show their importance on the all-or-nothing thermal unfolding process, which occurs at a temperature of 72 degrees C close to the PET glass transition temperature. Using various NMR probes such as backbone amide, methyl group, and histidine side-chain resonances, we probe the interaction of the enzymes with mono-(2-hydroxyethyl)terephthalic acid. The latter experiments are interpreted in terms of accessibility of the active site to the polymer chain.
PDF http://www.cell.com/article/S0006349522005483/pdf

Similar Articles

ID Score Article
29433 Zheng, Y; Li, QB; Liu, P; Yuan, YB; Dian, LY; Wang, Q; Liang, QF; Su, TY; Qi, QS Dynamic Docking-Assisted Engineering of Hydrolases for Efficient PET Depolymerization(2024)Acs Catalysis, 14.0, 5
10353 Lens-Pechakova, LS Recent studies on enzyme-catalysed recycling and biodegradation of synthetic polymers(2021)Advanced Industrial And Engineering Polymer Research, 4, 3
15009 Jayasekara, SK; Joni, HD; Jayantha, B; Dissanayake, L; Mandrell, C; Sinharage, MMS; Molitor, R; Jayasekara, T; Sivakumar, P; Jayakody, LN Trends in in-silico guided engineering of efficient polyethylene terephthalate (PET) hydrolyzing enzymes to enable bio-recycling and upcycling of PET(2023)
10754 Bååth, JA; Novy, V; Carneiro, LV; Guebitz, GM; Olsson, L; Westh, P; Ribitsch, D Structure-function analysis of two closely related cutinases from Thermobifida cellulosilytica(2022)Biotechnology And Bioengineering, 119, 2
13748 Sui, BB; Wang, T; Fang, JX; Hou, ZX; Shu, T; Lu, ZH; Liu, F; Zhu, YS Recent advances in the biodegradation of polyethylene terephthalate with cutinase-like enzymes(2023)
Scroll