Knowledge Agora



Similar Articles

Title Disposal of plastic mulching film through CO2-assisted catalytic pyrolysis as a strategic means for microplastic mitigation
ID_Doc 6817
Authors Jung, JM; Cho, SH; Jung, S; Lin, KYA; Chen, WH; Tsang, YF; Kwon, EE
Title Disposal of plastic mulching film through CO2-assisted catalytic pyrolysis as a strategic means for microplastic mitigation
Year 2022
Published
Abstract Conventional disposal processes (incineration and landfilling) of agricultural plastic wastes release harmful chemicals and microplastics into our ecosystems. To provide a disposal platform not releasing harmful chemicals, pyrolysis of a representative agricultural plastic waste was proposed in this study. Spent plastic mulching film (SMF) was used as a model waste compound. To make pyrolysis process more environmentally benign, CO2 was used as a raw material in pyrolysis of SMF. H-2 and hydrocarbons were produced from pyrolysis of SMF under the inert (N-2) and CO2 conditions, because SMF is composed of polyethylene. To enhance conversion of hydrocarbons into H-2, catalytic pyrolysis of SMF was conducted over Ni/SiO2. Compared to non-catalytic pyrolysis, total concentration of pyrolytic gases was enhanced up to 3.1 and 11.3 times under N-2 and CO2 conditions, respectively. The gas phase reactions between CO2 and hydrocarbons led to formation of CO, which enhanced production of pyrolytic gases under the CO2 condition. Moreover, gas phase reactions resulted in less production of pyrolytic oil from CO2 condition (15.9 wt%) in reference to the N-2 condition (22.6 wt%). All experimental results confirmed that CO2 and SMF can be used as useful feedstocks to produce value-added products. Environmental Implication: Plastic waste used from a sector of agriculture is incinerated or/and landfilled, generating hazardous microplastic and volatile compounds into the environment. Thus, an environmentally friendly process for plastic waste materials in the agricultural industry is required. This study converted a spent plastic mulching film (SMF), broadly used for plastic greenhouse, into value-added syngas through catalytic pyrolysis. CO2 was used as a reactant. We found that concentration of CO2 was key to improve syngas formation from pyrolysis of SMF. Thus, this study suggested that CO2/SMF are used as useful feedstocks through catalytic pyrolysis, while they were previously discarded as waste materials
PDF

Similar Articles

ID Score Article
26123 Kwon, D; Jung, S; Lin, KYA; Tsang, YF; Park, YK; Kwon, EE Synergistic effects of CO2 on complete thermal degradation of plastic waste mixture through a catalytic pyrolysis platform: A case study of disposable diaper(2021)
26667 Choi, D; Jung, S; Tsang, Y; Song, H; Moon, DH; Kwon, EE Sustainable valorization of styrofoam and CO2 into syngas(2022)
26791 Cuevas, AB; Leiva-Candia, DE; Dorado, MP An Overview of Pyrolysis as Waste Treatment to Produce Eco-Energy(2024)Energies, 17, 12
26629 Jung, S; Lee, S; Song, H; Tsang, YF; Kwon, EE Sustainable Valorization of E-Waste Plastic through Catalytic Pyrolysis Using CO2(2022)
19620 Tan, KQ; Ahmad, MA; Da Oh, W; Low, SC Valorization of hazardous plastic wastes into value-added resources by catalytic pyrolysis-gasification: A review of techno-economic analysis(2023)
29061 Biakhmetov, B; Dostiyarov, A; Ok, YS; You, SM A review on catalytic pyrolysis of municipal plastic waste(2023)Wiley Interdisciplinary Reviews-Energy And Environment, 12.0, 6
6606 Jung, JM; Lee, T; Jung, S; Tsang, YF; Bhatnagar, A; Lee, SS; Song, H; Park, WK; Kwon, EE Control of the fate of toxic pollutants from catalytic pyrolysis of polyurethane by oxidation using CO2(2022)
5931 Dai, LL; Zhou, N; Lv, YC; Cheng, YL; Wang, YP; Liu, YH; Cobb, K; Chen, PL; Lei, HW; Ruan, RG Pyrolysis technology for plastic waste recycling: A state-of-the-art review(2022)
17200 Gracida-Alvarez, UR; Benavides, PT; Lee, US; Wang, MC Life-cycle analysis of recycling of post-use plastic to plastic via pyrolysis(2023)
23649 Laghezza, M; Fiore, S; Berruti, F A review on the pyrolytic conversion of plastic waste into fuels and chemicals(2024)
Scroll