Knowledge Agora



Similar Articles

Title Embodied GHGs in a Fast Growing City: Looking at the Evolution of a Dwelling Stock using Structural Element Breakdown and Policy Scenarios
ID_Doc 68459
Authors Göswein, V; Krones, J; Celentano, G; Fernández, JE; Habert, G
Title Embodied GHGs in a Fast Growing City: Looking at the Evolution of a Dwelling Stock using Structural Element Breakdown and Policy Scenarios
Year 2018
Published Journal Of Industrial Ecology, 22, 6
Abstract Africa is currently experiencing rapid population growth and accelerated urbanization. This demographic shift will require a large amount of new construction material resulting in substantial environmental impact. For many cities on the continent, data gaps make specific quantification and robust prediction of this impact highly difficult. This article presents a method to assess the stock dynamics and embodied emissions of a rapidly growing urban built environment using a bottom-up, typological approach. This approach allows for the identification of appropriate engineering solutions for decarbonization by localizing embodied greenhouse gas (GHG) emissions in the different constructive elements with a revisited Sankey diagram. Different alternatives regarding housing type and construction techniques are compared. The city of Johannesburg is used as a case study to illustrate the relation between building types, technologies, and embodied GHG of its residential building stock. This new visualization uncovers the most material- and GHG-intense dwelling types and building elements. The adapted Sankey represents the building stock and its drivers in a simple way, allowing clear understanding of the consequences of potential alternatives. The business-as-usual scenario indicates 100.5 megatons carbon dioxide equivalent (Mt CO2-eq) for new construction between 2011 and 2040. The results of the dynamic model over time show that only a combination of a densified building stock with multistory buildings and the use of alternative construction materials and techniques show real potential to decelerate GHG emissions (33.0 Mt CO2-eq until 2040) while aiming to provide adequate and sustainable housing for all.
PDF

Similar Articles

ID Score Article
14131 Stephan, A; Athanassiadis, A Quantifying and mapping embodied environmental requirements of urban building stocks(2017)
7131 Yang, XN; Hu, MM; Zhang, CB; Steubing, B Key strategies for decarbonizing the residential building stock: Results from a spatiotemporal model for Leiden, the Netherlands(2022)
22676 Heisel, F; McGranahan, J; Ferdinando, J; Dogan, T High-resolution combined building stock and building energy modeling to evaluate whole-life carbon emissions and saving potentials at the building and urban scale(2022)
6820 Lausselet, C; Urrego, JPF; Resch, E; Brattebo, H Temporal analysis of the material flows and embodied greenhouse gas emissions of a neighborhood building stock(2021)Journal Of Industrial Ecology, 25, 2
13438 Lanau, M; Liu, G; Kral, U; Wiedenhofer, D; Keijzer, E; Yu, C; Ehlert, C Taking Stock of Built Environment Stock Studies: Progress and Prospects(2019)Environmental Science & Technology, 53, 15
6840 van Oorschot, J; Sprecher, B; Rijken, B; Witteveen, P; Blok, M; Schouten, N; van der Voet, E Toward a low-carbon and circular building sector: Building strategies and urbanization pathways for the Netherlands(2023)Journal Of Industrial Ecology, 27, 2
Scroll