Knowledge Agora



Similar Articles

Title Resource Recovery from Wastewater by Biological Technologies: Opportunities, Challenges, and Prospects
ID_Doc 6896
Authors Puyol, D; Batstone, D; Hülsen, T; Astals, S; Peces, M; Krömer, JO
Title Resource Recovery from Wastewater by Biological Technologies: Opportunities, Challenges, and Prospects
Year 2017
Published
Abstract imits in resource availability are driving a change in current societal production systems, changing the focus from residues treatment, such as wastewater treatment, toward resource recovery. Biotechnological processes offer an economic and versatile way to concentrate and transform resources from waste/wastewater into valuable products, which is a prerequisite for the technological development of a cradle-to-cradle bio-based economy. This review identifies emerging technologies that enable resource recovery across the wastewater treatment cycle. As such, bioenergy in the form of biohydrogen (by photo and dark fermentation processes) and biogas (during anaerobic digestion processes) have been classic targets, whereby, direct transformation of lipidic biomass into biodiesel also gained attention. This concept is similar to previous biofuel concepts, but more sustainable, as third generation biofuels and other resources can be produced from waste biomass. The production of high value biopolymers (e.g., for bioplastics manufacturing) from organic acids, hydrogen, and methane is another option for carbon recovery. The recovery of carbon and nutrients can be achieved by organic fertilizer production, or single cell protein generation (depending on the source) which may be utilized as feed, feed additives, next generation fertilizers, or even as probiotics. Additionlly, chemical oxidation-reduction and bioelectrochemical systems can recover inorganics or synthesize organic products beyond the natural microbial metabolism. Anticipating the next generation of wastewater treatment plants driven by biological recovery technologies, this review is focused on the generation and re-synthesis of energetic resources and key resources to be recycled as raw materials in a cradle-to-cradle economy concept.
PDF https://www.frontiersin.org/articles/10.3389/fmicb.2016.02106/pdf

Similar Articles

ID Score Article
27414 Awasthi, MK; Ganeshan, P; Gohil, N; Kumar, V; Singh, V; Rajendran, K; Harirchi, S; Solanki, MK; Sindhu, R; Binod, P; Zhang, ZQ; Taherzadeh, MJ Advanced approaches for resource recovery from wastewater and activated sludge: A review(2023)
6046 Kundu, D; Dutta, D; Samanta, P; Dey, S; Sherpa, KC; Kumar, S; Dubey, BK Valorization of wastewater: A paradigm shift towards circular bioeconomy and sustainability(2022)
16191 Garg, A; Basu, S; Shetti, NP; Bhattu, M; Alodhayb, AN; Pandiaraj, S Biowaste to bioenergy nexus: Fostering sustainability and circular economy(2024)
14827 Battista, F; Frison, N; Pavan, P; Cavinato, C; Gottardo, M; Fatone, F; Eusebi, AL; Majone, M; Zeppilli, M; Valentino, F; Fino, D; Tommasi, T; Bolzonella, D Food wastes and sewage sludge as feedstock for an urban biorefinery producing biofuels and added-value bioproducts(2020)Journal Of Chemical Technology And Biotechnology, 95, 2
6563 Ye, YY; Guo, WS; Ngo, HH; Wei, W; Cheng, DL; Bui, XT; Hoang, NB; Zhang, HY Biofuel production for circular bioeconomy: Present scenario and future scope(2024)
29775 Akyol, Ç; Foglia, A; Ozbayram, EG; Frison, N; Katsou, E; Eusebi, AL; Fatone, F Validated innovative approaches for energy-efficient resource recovery and re-use from municipal wastewater: From anaerobic treatment systems to a biorefinery concept(2020)Critical Reviews In Environmental Science And Technology, 50.0, 9
21902 Sravan, JS; Matsakas, L; Sarkar, O Advances in Biological Wastewater Treatment Processes: Focus on Low-Carbon Energy and Resource Recovery in Biorefinery Context(2024)Bioengineering-Basel, 11.0, 3
13688 Kumar, K; Ding, L; Zhao, HY; Cheng, MH Waste-to-Energy Pipeline through Consolidated Fermentation-Microbial Fuel Cell (MFC) System(2023)Processes, 11, 8
7013 Mishra, S; Singh, PK; Mohanty, P; Adhya, TK; Sarangi, PK; Srivastava, RK; Jena, J; Das, T; Hota, PK Green synthesis of biomethanol-managing food waste for carbon footprint and bioeconomy(2022)Biomass Conversion And Biorefinery, 12, 5
25076 Singh, PK; Mohanty, P; Mishra, S; Adhya, TK Food Waste Valorisation for Biogas-Based Bioenergy Production in Circular Bioeconomy: Opportunities, Challenges, and Future Developments(2022)
Scroll