Knowledge Agora



Similar Articles

Title CO2-mediated thermal treatment of disposable plastic food containers
ID_Doc 6905
Authors Jung, S; Tsang, YF; Kwon, D; Choi, D; Chen, WH; Kim, YH; Moon, DH; Kwon, EE
Title CO2-mediated thermal treatment of disposable plastic food containers
Year 2023
Published
Abstract In accordance with global economic prosperity, the frequencies of food delivery and takeout orders have been increasing. The pandemic life, specifically arising from COVID-19, rapidly expanded the food delivery service. Thus, the massive generation of disposable plastic food containers has become significant environmental problems. Establishing a sustainable disposal platform for plastic packaging waste (PPW) of food delivery containers has intrigued particular interest. To comprise this grand challenge, a reliable thermal disposable platform has been suggested in this study. From the pyrolysis process, a heterogeneous plastic mixture of PPW was converted into syngas and value-added hydrocarbons (HCs). PPW collected from five different restaurants consisted of polypropylene (36.9 wt%), polyethylene (10.5 wt%), polyethylene terephthalate (18.1 wt%), polystyrene (13.5 wt%), polyvinyl chloride (4.2 wt%), and other composites (16.8 wt%). Due to these compositional complexities, pyrolysis of PPW led to formations of a variety of benzene derivatives and aliphatic HCs. Adapting multi-stage pyrolysis, the different chemicals were converted into industrial chemicals (benzene, toluene, styrene, etc.). To selectively convert HCs into syngas (H-2 and CO), catalytic pyrolysis was adapted using supported Ni catalyst (5 wt% Ni/SiO2). Over Ni catalyst, H-2 was produced as a main product due to C-H bond scission of HCs. When CO2 was used as a co-reactant, HCs were further transformed to H-2 and CO through the chemical reactions of CO2 with gas phase HCs. CO2-assisted catalytic pyrolysis also retarded catalyst deactivation inhibiting coke deposition on Ni catalyst.
PDF

Similar Articles

ID Score Article
26123 Kwon, D; Jung, S; Lin, KYA; Tsang, YF; Park, YK; Kwon, EE Synergistic effects of CO2 on complete thermal degradation of plastic waste mixture through a catalytic pyrolysis platform: A case study of disposable diaper(2021)
26401 Jung, S; Kim, JH; Tsang, YF; Song, H; Kwon, EE Valorizing plastic toy wastes to flammable gases through CO2-mediated pyrolysis with a Co-based catalyst(2022)
26667 Choi, D; Jung, S; Tsang, Y; Song, H; Moon, DH; Kwon, EE Sustainable valorization of styrofoam and CO2 into syngas(2022)
26629 Jung, S; Lee, S; Song, H; Tsang, YF; Kwon, EE Sustainable Valorization of E-Waste Plastic through Catalytic Pyrolysis Using CO2(2022)
19620 Tan, KQ; Ahmad, MA; Da Oh, W; Low, SC Valorization of hazardous plastic wastes into value-added resources by catalytic pyrolysis-gasification: A review of techno-economic analysis(2023)
6817 Jung, JM; Cho, SH; Jung, S; Lin, KYA; Chen, WH; Tsang, YF; Kwon, EE Disposal of plastic mulching film through CO2-assisted catalytic pyrolysis as a strategic means for microplastic mitigation(2022)
27860 Urciuolo, M; Migliaccio, R; Chirone, R; Bareschino, P; Mancusi, E; Pepe, F; Ruoppolo, G Thermal and Catalytic Pyrolysis of Real Plastic Solid Waste as a Sustainable Strategy for Circular Economy(2023)Combustion Science And Technology, 195.0, 14
5931 Dai, LL; Zhou, N; Lv, YC; Cheng, YL; Wang, YP; Liu, YH; Cobb, K; Chen, PL; Lei, HW; Ruan, RG Pyrolysis technology for plastic waste recycling: A state-of-the-art review(2022)
23649 Laghezza, M; Fiore, S; Berruti, F A review on the pyrolytic conversion of plastic waste into fuels and chemicals(2024)
12454 Peng, YJ; Wang, YP; Ke, LY; Dai, LL; Wu, QH; Cobb, K; Zeng, Y; Zou, RG; Liu, YH; Ruan, RG A review on catalytic pyrolysis of plastic wastes to high-value products(2022)
Scroll