Knowledge Agora



Similar Articles

Title Tuning Sugar Biomass Waste Conversion for the Preparation of Carbon Materials for Supercapacitors and Catalysts for Oxygen Reduction
ID_Doc 7110
Authors Chernysheva, DV; Konstantinov, MS; Sidash, EA; Klushin, VA; Tokarev, DV; Andreeva, VE; Butova, VV; Kaichev, VV; Smirnova, NV; Ananikov, VP
Title Tuning Sugar Biomass Waste Conversion for the Preparation of Carbon Materials for Supercapacitors and Catalysts for Oxygen Reduction
Year 2023
Published Energy Technology, 11, 3
Abstract Agriculture is the most massive material circulation activity of humans, with significant annual volumes of production as well as substantial amounts of waste. Transforming agricultural wastes into high-value-added products is the key to sustainable development with efficient usage of renewable resources. The present study demonstrates the fine-tuning of the sugar beet pulp processing to access two types of materials for cutting edge applications-supercapacitors and fuel cells. Alkaline fine-tuning results in N,O-doped carbon material (CM) with an advantageous combination of surface area and morphology that allows to achieve high specific capacitance (308 F g(-1)), and excellent stability (>10 000 charge/discharge cycles). Not limited to the CM preparation and characterization, a real device is created in the present study to demonstrate the efficient usage of the carbon electrode in the form of the assembled coin cell. Acidic fine-tuning, in contrast, yields a methodology for P,N,O-doped material and optimizes to form active sites with electrocatalytic activity in the oxygen reduction reaction that is used for electricity production in proton-exchange membrane fuel cells. The developed approach demonstrates the tuning of functional properties and morphology of CMs under experimentally simple conditions using conventional reagents (KOH and H3PO4) and opens up new directions in the circular biomass usage projects.
PDF

Similar Articles

ID Score Article
23425 Jafari, M; Botte, GG Sustainable Green Route for Activated Carbon Synthesis from Biomass Waste for High-Performance Supercapacitors(2024)Acs Omega, 9, 11
10401 Subramaniam, T; Krishnan, SG; Ansari, MNM; Hamid, NA; Khalid, M Recent progress on supercapacitive performance of agrowaste fibers: a review(2023)Critical Reviews In Solid State And Materials Sciences, 48, 2
8795 Mamani, A; Barreda, D; Sardella, MF; Bavio, M; Blanco, C; González, Z; Santamaría, R Fe-doped biomass-derived activated carbons as sustainable electrode materials in supercapacitors using different electrolytes(2024)
24880 Park, S; Kim, J; Kwon, K A review on biomass-derived N-doped carbons as electrocatalysts in electrochemical energy applications(2022)
10672 Krishnan, SG; Arulraj, A; Jagadish, P; Khalid, M; Nasrollahzadeh, M; Fen, R; Yang, CC; Hegde, G Pore size matters!-a critical review on the supercapacitive charge storage enhancement of biocarbonaceous materials(2023)Critical Reviews In Solid State And Materials Sciences, 48, 1
26987 Samantray, R; Manickavasakam, K; Vivekanand; Pradhan, B; Kandasamy, M; Mishra, SC; Misnon, II; Jose, R Nanoarchitectonics of low process parameter synthesized porous carbon on enhanced performance with synergistic interaction of redox-active electrolyte for supercapacitor application(2024)
14790 Mohamed, MM; Shah, SS; Hakeem, AS; Javid, M; Aziz, MA; Yamani, ZH A Comprehensive Evaluation of Biomass-Derived Activated Carbon Materials for Electrochemical Applications in Zinc-Ion Hybrid Supercapacitors(2024)Acs Applied Energy Materials, 7, 17
21034 Khedulkar, AP; Pandit, B; Dang, VD; Doong, RA Agricultural waste to real worth biochar as a sustainable material for supercapacitor(2023)
22899 Zago, S; Scarpetta-Pizo, LC; Zagal, JH; Specchia, S PGM-Free Biomass-Derived Electrocatalysts for Oxygen Reduction in Energy Conversion Devices: Promising Materials(2024)Electrochemical Energy Reviews, 7.0, 1
12159 Alcaraz, L; Adán-Más, A; Arévalo-Cid, P; Montemor, MD; López, FA RETRACTED: Activated Carbons From Winemaking Biowastes for Electrochemical Double-Layer Capacitors (Retracted article. See vol. 11, 2023)(2020)
Scroll