Knowledge Agora



Similar Articles

Title Advances in nitrogen removal and recovery technologies from reject water: Economic and environmental perspectives
ID_Doc 7464
Authors Karmann, C; Magrová, A; Jenicek, P; Bartácek, J; Kouba, V
Title Advances in nitrogen removal and recovery technologies from reject water: Economic and environmental perspectives
Year 2024
Published
Abstract This review critically assesses nitrogen removal technologies applied in the reject water treatment, across different stages of technological development, with a focus on their economic and environmental impacts. The prevalent use of biological processes raises concerns due to potential environmental impacts caused by N2O emissions. However, partial nitritationanaerobic ammonium oxidation demonstrated economic benefits and the potential for positive environmental outcomes when properly operated and controlled. Furthermore, reject water, in many cases, provides sufficient nitrogen concentrations for nitrogen recovery processes, such as ammonia stripping, substituting production of industrial fertilizers and contributing to a circular economy. Nonetheless, their financial competitiveness is subject to various conditions, including the nitrogen concentra-tion or reject water flow. As the environmental benefits of bioprocesses and economic benefits of nitrogen recovery processes may vary, it is crucial to further optimize both and investigate novel promising technologies such as electrochemical systems, denitrifying anaerobic methane oxidation or direct ammonia oxidation.
PDF

Similar Articles

ID Score Article
21719 Beckinghausen, A; Odlare, M; Thorin, E; Schwede, S From removal to recovery: An evaluation of nitrogen recovery techniques from wastewater(2020)
13954 Chen, TL; Chen, LH; Lin, YPJ; Yu, CP; Ma, HW; Chiang, PC Advanced ammonia nitrogen removal and recovery technology using electrokinetic and stripping process towards a sustainable nitrogen cycle: A review(2021)
3341 Zhang, XY; Liu, Y Circular economy-driven ammonium recovery from municipal wastewater: State of the art, challenges and solutions forward(2021)
27768 Qin, YJ; Wang, KC; Xia, Q; Yu, SQ; Zhang, MA; An, Y; Zhao, XD; Zhou, Z Up-concentration of nitrogen from domestic wastewater: A sustainable strategy from removal to recovery(2023)
29126 Lin, YZ; Guo, M; Shah, N; Stuckey, DC Economic and environmental evaluation of nitrogen removal and recovery methods from wastewater(2016)
9994 Qin, YJ; Wang, KC; Zhou, Z; Yu, SQ; Wang, LH; Xia, Q; Zhao, XD; Zhou, CT; Ye, JF; Wu, ZC Nitrogen recovery from wastewater as nitrate by coupling mainstream ammonium separation with side stream cyclic up-concentration and targeted conversion(2023)
29411 Xiang, SY; Liu, YH; Zhang, GM; Ruan, R; Wang, YP; Wu, XD; Zheng, HL; Zhang, Q; Cao, LP New progress of ammonia recovery during ammonia nitrogen removal from various wastewaters(2020)World Journal Of Microbiology & Biotechnology, 36.0, 10
7356 Dhanda, A; Thulluru, LP; Mishra, S; Chowdhury, S; Dubey, BK; Ghangrekar, MM Integrated fuel cell system for sustainable wastewater treatment, ammonia recovery, and power production(2024)
27682 Farghali, M; Chen, ZH; Osman, AI; Ali, IM; Hassan, D; Ihara, I; Rooney, DW; Yap, PS Strategies for ammonia recovery from wastewater: a review(2024)
25381 Kogler, A; Gong, ML; Williams, KS; Tarpeh, WA Flexible Electrochemical Stripping for Wastewater Ammonia Recovery with On-Demand Product Tunability(2024)Environmental Science & Technology Letters, 11, 8
Scroll