Knowledge Agora



Similar Articles

Title On the use of plastic precursors for preparation of activated carbons and their evaluation in CO2 capture for biogas upgrading: a review
ID_Doc 7469
Authors Pérez-Huertas, S; Calero, M; Ligero, A; Pérez, A; Terpilowski, K; Martín-Lara, MA
Title On the use of plastic precursors for preparation of activated carbons and their evaluation in CO2 capture for biogas upgrading: a review
Year 2023
Published
Abstract In circular economy, useful plastic materials are kept in circulation as opposed to being landfilled, incinerated, or leaked into the natural environment. Pyrolysis is a chemical recycling technique useful for unrecyclable plastic wastes that produce gas, liquid (oil), and solid (char) products. Although the pyrolysis technique has been extensively studied and there are several installations applying it on the industrial scale, no commercial appli-cations for the solid product have been found yet. In this scenario, the use of plastic-based char for the biogas upgrading may be a sustainable way to transform the solid product of pyrolysis into a particularly beneficial material. This paper reviews the preparation and main parameters of the processes affecting the final textural properties of the plastic-based activated carbons. Moreover, the application of those materials for the CO2 capture in the processes of biogas upgrading is largely discussed.
PDF https://doi.org/10.1016/j.wasman.2023.02.022

Similar Articles

ID Score Article
6093 Pereira, L; Castillo, V; Calero, M; González-Egido, S; Martín-Lara, MA; Solís, RR Promoting the circular economy: Valorization of a residue from industrial char to activated carbon with potential environmental applications as adsorbents(2024)
19620 Tan, KQ; Ahmad, MA; Da Oh, W; Low, SC Valorization of hazardous plastic wastes into value-added resources by catalytic pyrolysis-gasification: A review of techno-economic analysis(2023)
6554 Ligero, A; Solis, RR; Bl, G; Mun, MJ; Perez, A; Calero, M On the cutting-edge of non-recyclable plastic waste valorization: From pyrolysis char to nitrogen-enriched activated carbon for landfill biogas upgrading(2024)Journal Of Environmental Chemical Engineering, 12, 2
10366 Racek, J; Chorazy, T; Miino, MC; Vrsanská, M; Brtnicky, M; Mravcová, L; Kucerík, J; Hlavínek, P Biochar production from the pyrolysis of food waste: Characterization and implications for its use(2024)
17672 Janáková, I; Cech, M; Grabovská, S; Sigut, O; Sala, P; Kijo-Kleczkowska, A Pyrolysis of Specific Non-Recyclable Waste Materials: Energy Recovery and Detailed Product Characteristics(2024)Materials, 17, 8
14052 Pereira, L; Castillo, V; Calero, M; Blázquez, G; Solís, RR; Martín-Lara, MA Conversion of char from pyrolysis of plastic wastes into alternative activated carbons for heavy metal removal(2024)
28774 Cabrera-Codony, A; Ruiz, B; Gil, RR; Popartan, LA; Santos-Clotas, E; Martín, MJ; Fuente, E From biocollagenic waste to efficient biogas purification: Applying circular economy in the leather industry(2021)
21185 Infurna, G; Botta, L; Maniscalco, M; Morici, E; Caputo, G; Marullo, S; D'Anna, F; Dintcheva, NT Biochar Particles Obtained from Agricultural Carob Waste as a Suitable Filler for Sustainable Biocomposite Formulations(2022)Polymers, 14.0, 15
6340 Bernardo, M; Lapa, N; Fonseca, I; Esteves, IAAC Biomass Valorization to Produce Porous Carbons: Applications in CO2 Capture and Biogas Upgrading to Biomethane-A Mini-Review(2021)
5711 Merchan, AL; Fischoeder, T; Hee, J; Lehnertz, MS; Osterthun, O; Pielsticker, S; Schleier, J; Tiso, T; Blank, LM; Klankermayer, J; Kneer, R; Quicker, P; Walther, G; Palkovits, R Chemical recycling of bioplastics: technical opportunities to preserve chemical functionality as path towards a circular economy(2022)Green Chemistry, 24, 24
Scroll