Knowledge Agora



Similar Articles

Title Microbial production and applications of β-glucosidase-A review
ID_Doc 7545
Authors Yang, WQ; Su, YW; Wang, RB; Zhang, HY; Jing, HY; Meng, J; Zhang, GQ; Huang, LQ; Guo, LP; Wang, J; Gao, WY
Title Microbial production and applications of β-glucosidase-A review
Year 2024
Published
Abstract beta-Glucosidase exists in all areas of living organisms, and microbial beta-glucosidase has become the main source of its production because of its unique physicochemical properties and the advantages of high-yield production by fermentation. With the rise of the green circular economy, the production of enzymes through the fermentation of waste as the substrate has become a popular trend. Lignocellulosic biomass is an easily accessible and sustainable feedstock that exists in nature, and the production of biofuels from lignocellulosic biomass requires the involvement of beta-glucosidase. This review proposes ways to improve beta-glucosidase yield and catalytic efficiency. Optimization of growth conditions and purification strategies of enzymes can increase enzyme yield, and enzyme immobilization, genetic engineering, protein engineering, and whole-cell catalysis provide solutions to enhance the catalytic efficiency and activity of beta-glucosidase. Besides, the diversified industrial applications, challenges and prospects of beta-glucosidase are also described.
PDF

Similar Articles

ID Score Article
7699 Méndez-Líter, JA; de Eugenio, LI; Hakalin, NLS; Prieto, A; Martínez, MJ Production of a β-Glucosidase-Rich Cocktail from Talaromyces amestolkiae Using Raw Glycerol: Its Role for Lignocellulose Waste Valorization(2021)Journal Of Fungi, 7, 5
9851 Guimaraes, A; Mota, AC; Pereira, AS; Fernandes, AM; Lopes, M; Belo, I Rice Husk, Brewer's Spent Grain, and Vine Shoot Trimmings as Raw Materials for Sustainable Enzyme Production(2024)Materials, 17.0, 4
12831 Alvarez-Cao, ME; Cerdán, ME; González-Siso, MI; Becerra, M Bioconversion of Beet Molasses to Alpha-Galactosidase and Ethanol(2019)
20081 Rodrigues, DM; da Silva, MF; de Mélo, AHF; Carvalho, PH; Baudel, HM; Goldbeck, R Sustainable synthesis pathways: Bacterial nanocellulose from lignocellulosic biomass for circular economy initiatives(2024)
9021 Srivastava, N; Singh, R; Singh, P; Ahmad, I; Singh, RP; Rai, AK; Asiri, M; Gupta, VK Recent advances on lignocellulosic bioresources and their valorization in biofuels production: Challenges and viability assessment(2023)
33377 Wang, YM; Liu, P; Zhang, GF; Yang, QM; Lu, J; Xia, T; Peng, LC; Wang, YT Cascading of engineered bioenergy plants and fungi sustainable for low-cost bioethanol and high-value biomaterials under green-like biomass processing(2021)
6168 Feijoo, H; Arias, A; Moreira, MT Environmental assessment of the valorization of glycerol for the production of hyperthermophilic ?-glucosidase under a biorefinery approach(2022)
20517 Astolfi, V; Astolfi, AL; Mazutti, MA; Rigo, E; Di Luccio, M; Camargo, AF; Dalastra, C; Kubeneck, S; Fongaro, G; Treichel, H Cellulolytic enzyme production from agricultural residues for biofuel purpose on circular economy approach(2019)Bioprocess And Biosystems Engineering, 42, 5
15746 Vu, VNH; Kohari-Farkas, C; Filep, R; Laszlovszky, G; Ban, MT; Bujna, E; Gupta, VK; Nguyen, QD Design and construction of artificial microbial consortia to enhance lignocellulosic biomass degradation(2023)Biofuel Research Journal-Brj, 10, 3
26580 D'ambrosio, S; Zaccariello, L; Sadiq, S; D'Albore, M; Battipaglia, G; D'Agostino, M; Battaglia, D; Schiraldi, C; Cimini, D Grape Stalk Valorization: An Efficient Re-Use of Lignocellulosic Biomass through Hydrolysis and Fermentation to Produce Lactic Acid from Lactobacillus rhamnosus IMC501(2023)Fermentation-Basel, 9, 7
Scroll