Knowledge Agora



Similar Articles

Title Comparing the financial costs and carbon neutrality of polyester fibres produced from 100% bio-based PET, 100% recycled PET, or in combination
ID_Doc 7604
Authors Berger, NJ; Pfeifer, C
Title Comparing the financial costs and carbon neutrality of polyester fibres produced from 100% bio-based PET, 100% recycled PET, or in combination
Year 2024
Published
Abstract The rise of fast fashion has led to challenges in sustainable production and recycling of polyester textile waste. Bio-based polyethylene terephthalate (bio-PET) and the enzymatic hydrolysis of PET textiles may offer two solutions for bio and circular clothing. This study designed and simulated scaled enzymatic hydrolysis of fossil PET into ethylene glycol (r-EG) and purified terephthalic acid (r-PTA), the production of bio-EG and bio-PTA from the wheat straw ethanol (EtOH) and corn stover isobutene (IBN), respectively, and the production of PET polyester textile fibres from these monomers. The research goal was to determine whether bio-PET, r-PET, or their mixture achieves better positive profitability and NPV2023 and carbon neutrality in textile fibres. The financial returns and carbon emissions for r-PET fibres with a bio-PET content of 0%, 20%, 40%, 60%, 80% to 100% was estimated for scenario 1 (a newly constructed plant), scenario 2 (no capital costs for the EtOH or IBN processes), and scenario 3 (no capital costs for the EtOH, IBN, and enzymatic hydrolysis processes). While scenario 1 was not able to generate positive net profits or NPV2023, scenarios 2 and 3 were able to attain financial sustainability when the bio-PET content was <= 40%. On the other hand, increasing the amount of bio-PET content in the polyester fibre from 0 to 100 wt.% decreased its carbon footprint from 2.99 to 0.46 kg CO2eq./kg of PET fibre.
PDF

Similar Articles

ID Score Article
6312 Subramanian, K; Chopra, SS; Cakin, E; Li, XT; Lin, CSK Environmental life cycle assessment of textile bio-recycling - valorizing cotton-polyester textile waste to pet fiber and glucose syrup(2020)
10326 Jenull-Halver, U; Holzer, C; Piribauer, B; Quartinello, F Development of New Treatment Methods for Multi Material Textile Waste(2020)
20574 Farahmandpour, R; Karimi, K; Denayer, JFM; Shafiei, M Innovative biorefineries for cleaner waste textile management towards circular economy: Techno-economic analysis(2022)
16600 Subramanian, K; Sarkar, MK; Wang, HM; Qin, ZH; Chopra, SS; Jin, MS; Kumar, V; Chen, C; Tsang, CW; Lin, CSK An overview of cotton and polyester, and their blended waste textile valorisation to value-added products: A circular economy approach - research trends, opportunities and challenges(2022)Critical Reviews In Environmental Science And Technology, 52, 21
26311 Valh, JV; Voncina, B; Lobnik, A; Zemljic, LF; Skodic, L; Vajnhandl, S Conversion of polyethylene terephthalate to high-quality terephthalic acid by hydrothermal hydrolysis: the study of process parameters(2020)Textile Research Journal, 90, 13-14
29651 Majumdar, A; Shukla, S; Singh, AA; Arora, S Circular fashion: Properties of fabrics made from mechanically recycled poly-ethylene terephthalate (PET) bottles(2020)
16636 Athanasopoulos, P; Zabaniotou, A Post-consumer textile thermochemical recycling to fuels and biocarbon: A critical review(2022)
27554 Piribauer, B; Bartl, A; Ipsmiller, W Enzymatic textile recycling - best practices and outlook(2021)Waste Management & Research, 39.0, 10
5530 Choudhury, K; Tsianou, M; Alexandridis, P Recycling of Blended Fabrics for a Circular Economy of Textiles: Separation of Cotton, Polyester, and Elastane Fibers(2024)Sustainability, 16, 14
10149 Navone, L; Moffitt, K; Hansen, KA; Blinco, J; Payne, A; Speight, R Closing the textile loop: Enzymatic fibre separation and recycling of wool/polyester fabric blends(2020)
Scroll